Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (5): 460-466    DOI: 10.11902/1005.4537.2017.077
  研究报告 本期目录 | 过刊浏览 |
输电杆塔材料在模拟工业环境中的大气腐蚀行为研究
孟晓波1,蒋武斌2,廖永力1,李锐海1,郑志军2(),高岩3
1 南方电网科学研究院有限责任公司 广州 510080
2 华南理工大学机械与汽车工程学院 广州 510641
3 华南理工大学材料科学与工程学院 广州 510641
Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments
Xiaobo MENG1,Wubin JIANG2,Yongli LIAO1,Ruihai LI1,Zhijun ZHENG2(),Yan GAO3
1 Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, China
2 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
3 School of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
全文: PDF(1244 KB)   HTML
摘要: 

研究了输电杆塔材料Q235,Q345钢以及镀锌钢在NaHSO3溶液喷雾的模拟工业大气环境中的腐蚀行为。使用腐蚀失重法获得了3种材料的腐蚀速率。结果表明,在NaHSO3溶液低浓度范围 (≤0.005 mol/L),随浓度增加,Q235和Q345钢的腐蚀程度均较低且无明显变化;在中等浓度范围 (0.005~0.02 mol/L),随浓度增加,两种材料呈加速腐蚀的趋势;在较高浓度范围 (0.02~0.03 mol/L),两种材料的腐蚀程度最高,但随浓度增加并无明显改变。XRD分析和SEM观察进一步表明,以上腐蚀规律与是否发生片状γ-FeOOH向棉花状α-FeOOH转变有关。另外,在各种浓度下,镀锌钢的腐蚀产物类型无明显差异,主要由ZnO,Zn4CO3(OH)6,Zn5(CO3)2(OH)6及Zn4SO4(OH)6组成。

关键词 碳钢镀锌钢模拟工业环境大气腐蚀    
Abstract

The atmosphere corrosion behaviour of transmission tower materials including Q235, Q345 and galvanized steel in simulated industrial environments of spraying NaHSO3 solutions was investigated by means of mass loss method, XRD analysis and SEM observation. The results indicated that the corrosion degree of Q235 and Q345 was not significantly increased with the increase of NaHSO3 concentration of the simulated solution below 0.005 mol/L, and that the above two steels presented a trend of accelerated corrosion with the increase of NaHSO3 concentration in the range between 0.005 and 0.02 mol/L, and that the corrosion degree of Q235 and Q345 had not obvious changes with the increase of NaHSO3 concentration in the range between 0.02 and 0.03 mol/L. The results of XRD analysis and SEM observation further suggested that the above corrosion phenomena of Q235 and Q345 steel are strongly related to the fact whether the conversion of corrosion product γ-FeOOH to α-FeOOH did occur or not for the media with the amount of NaHSO3 in every individual concentration range. In addition, the corrosion products on galvanized steel mainly consisted of ZnO, Zn4CO3(OH)6, Zn5(CO3)2(OH)6 and Zn4SO4(OH)6 despite different concentration of spraying solutions.

Key wordscarbon steel    galvanized steel    simulated industrial environment    atmospheric corrosion
收稿日期: 2017-05-16     
基金资助:国家自然科学基金 (51477072)
作者简介: 孟晓波,男,1986年生,博士,高级工程师

引用本文:

孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
Xiaobo MENG, Wubin JIANG, Yongli LIAO, Ruihai LI, Zhijun ZHENG, Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 460-466.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.077      或      https://www.jcscp.org/CN/Y2017/V37/I5/460

Steel C S P Mn Si Ni Cr Fe
Q235 0.182 0.017 0.020 0.295 0.104 0.046 <0.01 Bal.
Q345 0.159 0.015 0.016 1.200 0.210 0.088 <0.01 Bal.
表1  Q235和Q345钢的主要化学成分
图1  3种材料在不同浓度NaHSO3溶液中加速腐蚀96 h后的表面宏观形貌
图2  Q235、Q345和镀锌钢腐蚀失重随着喷雾溶液浓度的变化曲线
图3  Q235和Q345钢经不同浓度的NaHSO3溶液加速实验96 h后腐蚀产物的XRD谱
图4  镀锌钢在NaHSO3喷雾浓度为0.001和0.005 mol/L时加速实验96 h后腐蚀产物的XRD谱
图5  Q235和Q345钢在不同浓度NaHSO3喷雾溶液下加速实验96 h后表面锈层微观形貌
图6  镀锌钢在不同浓度NaHSO3喷雾溶液下加速实验96 h后表面锈层微观形貌
[1] Yuan X J, Zhang J X, Ji X W, et al.Corrosion behavior of galvanized steel for power transmission tower in polluted environment[J]. Corros. Sci. Prot. Technol., 2013, 25: 13
[1] (原徐杰, 张俊喜, 季献武等. 电力输电杆塔用镀锌钢在污染环境中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2013, 25: 13)
[2] Wang P, Yin Z H, Ren H T, et al.Research on prediction of carbon steel in SO2 atmospheric corrosion using grey model[J]. Appl. Mech. Mater., 2014, 507: 258
[3] Liu Y E, Lin C, Zhao Q.Corrosion behavior of mild steel in atmosphere containing SO2[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 51
[3] (刘月娥, 林翠, 赵晴. 碳钢在SO2大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30: 51)
[4] Han W, Jia W, Wang J, et al.Effect of SO2 on corrosion mechanism of A3 steel at dewing environment[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 355
[4] (韩薇, 贾薇, 汪俊等. 凝露状态下SO2对A3钢腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2002, 22: 355)
[5] Wang Z Y, Yu G C, Han W.Atmospheric corrosion of carbon steel and low alloy steel in polluted environment[J]. J. Iron Steel Res., 2003, 15(3): 47
[5] (王振尧, 于国才, 韩薇. 碳钢和低合金钢在污染环境中的大气腐蚀规律[J]. 钢铁研究学报, 2003, 15(3): 47)
[6] Lin C, Chen S J, Xiao Z Y.Effect of humidity on corrosion behavior of low carbon steel in atmosphere containing SO2[J]. Mater. Mech. Eng., 2012, 36(1): 16
[6] (林翠, 陈三娟, 肖志阳. 含SO2大气中湿度对低碳钢腐蚀行为的影响[J]. 机械工程材料, 2012, 36(1): 16
[7] Lv W Y, Wang Z Y, Yu Q C, et al.Synergic effect of NaHSO3 and NaCl on atmospheric corrosion of Q235 steel[J]. Corros. Sci. Prot. Technol., 2015, 27: 545
[7] (吕旺燕, 王振尧, 于全成等. NaHSO3和NaCl对Q235钢大气腐蚀的协同作用[J]. 腐蚀科学与防护技术, 2015, 27: 545)
[8] Zhu L Q, Li M W, Liu H C, et al.Research of accelerated corrosion test of Zinc, Cadmium coating on high-strength steel[J]. J. Aviat., 2006, 27: 341
[8] (朱立群, 李敏伟, 刘慧丛等. 高强度钢表面镀锌、镉层加速腐蚀试验研究[J]. 航空学报, 2006, 27: 341)
[9] Kamimura T, Hara S, Miyuki H, et al.Composition and protective ability of rust layer formed on weathering steel exposed to various environments[J]. Corros. Sci., 2006, 48: 2799
[10] Asami K, Kikuchi M.In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corros. Sci., 2003, 45: 2671
[11] Wang Z Y, Yu Q C, Chen J J, et al.Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 53
[11] (王振尧, 于全成, 陈军君等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34: 53)
[12] Shao C J.The comparison of atmospheric corrosion resistance of Q345 and weather-resistant steel 09CuPCrNi in simulated industrial environment[J]. Electr. Eng., 2011, (3): 12
[12] (邵长静. Q345钢与耐候钢09CuPCrNi模拟工业大气耐蚀性能比较[J]. 电大理工, 2011, (3): 12)
[13] de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel[J]. Corros. Sci., 2011, 53: 604
[14] Palraj S, Selvaraj M, Maruthan K, et al.Kinetics of atmospheric corrosion of mild steel in marine and rural environments[J]. J. Mar. Sci. Appl., 2015, 14: 105
[15] Odnevall I, Leygraf C.The formation of Zn4SO4(OH)64H2O in a rural atmosphere[J]. Corros. Sci., 1994, 36: 1077
[16] Yuan X J, Zhang J X, Zhang S M, et al.Corrosion behavior of galvanized steel for power transmission tower with breakage of zinc coating in polluted environment[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 395
[16] (原徐杰, 张俊喜, 张世明等. 镀锌层破损输电杆塔用镀锌钢在干湿交替作用下的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33: 395)
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[3] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[4] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[6] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[7] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[8] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[9] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[10] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[11] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[12] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[13] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[14] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.