Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 365-372    DOI: 10.11902/1005.4537.2017.073
  研究报告 本期目录 | 过刊浏览 |
N5镍基单晶高温合金在王水中的电化学溶解行为研究
宋增意, 刘莉, 邓丽, 孙元, 周亦胄()
中国科学院金属研究所 沈阳 110016
Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte
Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(5950 KB)   HTML
摘要: 

选用王水为电解液,通过动电位极化曲线、电化学阻抗、恒电流密度、恒电压电解实验研究N5镍基单品高温合金在王水中的电化学行为,采用SEM,EDS,EPMA和XRD等表征手段分析阳极产物的成分和形貌。结果表明,在电解过程中合金表面有两层明显的覆盖层,具有疏松结构的外层主要为Ta、W的氧化物和碳化物,内层为残留金属基体和金属氧化物组成的具有多孔结构的富Cr氧化层,电解后合金阳极反应由活化控制转变为扩散控制。本文阐明高温合金在王水中的电化学溶解行为,建立合金溶解模型。结果表明,表面阳极产物堆积产生的扩散阻力是电解阻力增加的主要原因,及时去除表面阳极产物能使合金电解速率提高近100%。

关键词 高温合金王水电化学溶解极化曲线阳极产物    
Abstract

The wet recovery efficiency of superalloy directly depends on its dissolution rate, therefore,the electrochemical dissolution behavior of a Ni-based superalloy N5 in aqua regia was studied by means of potentiondynamic polarization measurement and electrochemical impedance spectroscopy (EIS), as well as galvanostatic- and potentiostaic-electrolysis. While the surface morphology and dissolution products of the treated alloy were characterized by means of SEM, EDS, EPMA and XRD. It was found that during electrolysis a two layered corrosion product formed on the alloy surface, which consisted of an outer layer with loose deposition of oxides and carbides of Ta and W and an inner porous layer consisted of residual matrix and Cr-rich oxides. A qualitative model has been assumed to illustrate the electrochemical dissolution behavior. It follows that the diffusion barrier effect induced by corrosion products on the anode is the main cause responsible for the increase of the electrolytic resistance, hence, stripping off the corrosion products in time can increase the dissolution rate of the superalloy by ca 100%.

Key wordssuperalloy    aqua regia electrolyte    electrochemical dissolution    polarization curve    oxidation product
收稿日期: 2017-05-06     
ZTFLH:  TG113.23  
基金资助:国家自然科学基金 (51271186)
作者简介:

作者简介 宋增意,男,1992年生,硕士生

引用本文:

宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 365-372.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.073      或      https://www.jcscp.org/CN/Y2018/V38/I4/365

图1  N5合金在王水电解液中的电解速率和电流效率随电流密度的变化曲线
图2  N5合金在王水中的电化学溶解曲线
图3  N5合金不同时间电溶解后的表面形貌
Element Mass fraction / % Atomic fraction / %
Al K 1.45 2.73
Cr K 6.34 6.21
Co K 4.85 4.19
Ni K 15.90 13.78
Mo L 2.43 1.29
Ta M 35.93 10.11
W M 15.03 4.16
表1  N5合金电解120 s的阳极产物成分分析结果
图5  N5合金在王水中电解后横截面的电子探针分析结果
图6  N5合金电溶解后内部的微观组织形貌
图7  N5合金所含各种纯金属元素在王水中的阳极极化曲线
图8  N5合金在王水中电解前后的电化学阻抗谱
图9  N5合金在恒电位1.554 V下电解1800 s过程中电流密度随时间的变化
图10  N5合金恒电流密度0.1 A/cm2电解3600 s过程中电压随时间变化曲线
图11  N5合金在王水中恒电流密度下电化学溶解过程的图解说明
图4  N5合金电溶解阳极产物的XRD分析结果
[1] Sun X F, Jin T, Zhou Y Z, et al.Research progress of nickel-base single crystal superalloys[J]. Mater. China, 2012, 31(12): 1(孙晓峰, 金涛, 周亦胄等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12): 1)
[2] Chang L H.Effects of the main alloy elements on microstructure and properties of nickel base alloys[J]. Turb. Technol., 2001, 43: 319(常连华. 主要合金元素对镍基合金组织和性能的影响[J]. 汽轮机技术, 2001, 43: 319)
[3] Huang Y, Wang L, Liu Y, et al.Effects of alloying elements on oxidation behavior of a Ni-base superalloy at 1223 K[J]. Trans. Mater. Heat Treat., 2011, 32(12): 1(黄炎, 王磊, 刘杨等. 合金元素对Ni基高温合金1223K氧化行为的影响[J]. 材料热处理学报, 2011, 32(12): 1)
[4] Xing W D, Fan X X, Dong H G, et al.Regeneration technology and progress of waste superalloy[J]. Chin. J. Rare Met., 2013, 37: 494(行卫东, 范兴祥, 董海刚等. 废旧高温合金再生技术及进展[J]. 稀有金属, 2013, 37: 494)
[5] Srivastava R R, Kim M S, Lee J C, et al.Resource recycling of superalloys and hydrometallurgical challenges[J]. J. Mater. Sci., 2014, 49: 4671
[6] Meng H Q, Ma G, Wu X, et al.Hydrometallurgical recovery of waste Ni-Co super-allous[J]. Guangzhou Chem. Ind., 2012, 40(17): 29(孟晗琪, 马光, 吴贤等. 镍钴高温合金废料湿法冶金回收[J]. 广州化工, 2012, 40(17): 29)
[7] Ma R J.New development of hydrometallurgy[J]. Hydrometall. China, 2007, 26: 1(马荣骏. 湿法冶金新发展[J]. 湿法冶金, 2007, 26: 1)
[8] Palant A A, Levin A M, Levchuk O M, et al.Electrochemical processing of the metallic wastes of ZhS32 nickel superalloys[J]. Russ. Metall., 2013, 2013: 497
[9] Palant A A, Levchuk O M, Bryukvin V A, et al.Complex electrochemical processing of the metallic wastes from a rhenium-containing nickel superalloy in sulfuric acid electrolytes[J]. Russ. Metall., 2011, 2011: 589
[10] Palant A A, Gracheva O M, Bryukvin V A.Symmetric alternating current-assisted electrochemical processing of metallic rhenium wastes in ammonia electrolytes[J]. Russ. Metall., 2007, 2007: 643
[11] Stoller V, Olbrich A, Meese-Marktscheffel J, et al.Process for electrochemical decomposition of superalloys [P]. US Pat., 2003013 6685A1, 2003
[12] Stoller V, Olbrich A, Meese-Marktscheffel J, et al.Electrochemical dissolution process for disintegrating superalloy scraps [P]. European Patent. 1312686B1, 2008
[13] Haisch T, Mittemeijer E, Schultze J W.Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: Microstructure of surface films formed by carbides[J]. Electrochim. Acta, 2001, 47: 235
[14] Wang D Y, Zhu Z W, Wang N F, et al.Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution[J]. Electrochim. Acta, 2015, 156: 301
[15] Meleka A H, Glew D A.Electrochemical machining[J]. Int. Mater. Rev., 1977, 22: 229
[16] Fernandes S Z, Mehendale S G, Venkatachalam S.Influence of frequency of alternating current on the electrochemical dissolution of mild steel and nickel[J]. J. Appl. Electrochem., 1980, 10: 649
[17] Olsson C O A, Landolt D. Passive films on stainless steels—chemistry, structure and growth[J]. Electrochim. Acta, 2003, 48: 1093
[18] Singh V B, Arvind U.Active, passive and transpassive dissolution of a nickel base super alloy in concentrated acid mixture solution[J]. Mater. Corros., 1995, 46: 590
[19] Abdallah M.Corrosion behaviour of 304 stainless steel in sulphuric acid solutions and its inhibition by some substituted pyrazolones[J]. Mater. Chem. Phys., 2003, 82: 786
[20] Kolotyrkin Y M.The electrochemistry of alloys[J]. Electrochim. Acta, 1980, 25: 89
[21] Mischler S, Vogel A, Mathieu H J, et al.Chemical composition of the passive film on Fe-24Cr and Fe-24Cr-11Mo studied by AES, XPS and SIMS[J]. ChemInform, 1991, 32: 925
[1] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[2] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[3] 李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[4] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[6] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[7] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[8] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[9] 戴芸,刘胜胆,邓运来,张新明. 7020铝合金在3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[10] 徐致孝,周和荣,姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[11] 苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[12] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[13] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[14] 孙井永,李秋实,郭洪波,宫声凯. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 497-504.
[15] 孙擎擎,周文辉,谢跃煌,董朋轩,陈康华,陈启元. 微量Cl-和温度对7150-T76铝合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 121-129.