Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (5): 473-478    DOI: 10.11902/1005.4537.2017.070
  研究报告 本期目录 | 过刊浏览 |
L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究
陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃()
北京化工大学 有机无机复合材料国家重点实验室 北京 100029
Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution
Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG()
State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(818 KB)   HTML
摘要: 

针对L921A合金钢在3.5%(质量分数)NaCl溶液中的腐蚀较为严重,研制了一种基于有机/无机复配的无毒、高效的缓蚀剂。结果表明:该缓蚀剂是一种阳极型缓蚀剂,其缓蚀效率达到97%以上。L921A合金钢在3.5%NaCl溶液中,其阻抗谱由一个高频容抗弧和低频感抗弧组成,具有两个时间常数,表明L921A合金钢在3.5%NaCl溶液中具有点蚀敏感性。当在3.5%NaCl溶液中添加缓蚀剂后,L921A合金钢的阻抗谱仅为单个容抗弧,只有一个时间常数。浸泡35 h后,其阻抗值由103 Ωcm2增加到1.1×104 Ωcm2。此时,缓蚀剂在合金钢表面形成一层膜,其覆盖度达到约80%。

关键词 L921A钢NaCl溶液正交试验缓蚀剂电化学阻抗谱缓蚀机理    
Abstract

A non-toxic and compound organic-inorganic corrosion inhibitor was prepared with cerium salt, polyphosphate, Zn-salt, borate and organic polymer as raw materials, and then the effect of which on the corrosion of alloy steel L921A in 3.5%(mass fraction) NaCl solution was studied by weight loss measurement in conjunction with orthogonal method. The results show that the corrosion inhibitor was an anodic corrosion inhibitor with inhibition efficiency 97% for alloy steel L921A. The electrochemical impedance spectroscopy (EIS) spectrum of the alloy steel L921A in 3.5%NaCl solution was composed of a high frequency capacitive loop and a low frequency inductive loop with two time-constants, indicating that the alloy steel L921A presented pitting susceptibility in 3.5%NaCl solution. When the corrosion inhibitor was added to the 3.5%NaCl solution, the EIS spectrum of the alloy steel L921A presented only a single capacitive loop with one time-constant. After immersion in 3.5%NaCl solution for 35 h, the electrochemical impedance of the steel increased from 103 Ωcm2 to 1.1×104 Ωcm2. In this case, the coverage of the corrosion inhibitor reached about 80% of the surface of the alloy steel L921A.

Key wordsL921A steel    NaCl solution    orthogonal test    corrosion inhibitor    electrochemical impedance spectroscopy    corrosion mechanism
收稿日期: 2017-05-02     
作者简介: 陈振宁,女,1993年生,硕士生

引用本文:

陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
Zhenning CHEN, Rihui CHEN, Jinjie PAN, Yanna TENG, Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 473-478.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.070      或      https://www.jcscp.org/CN/Y2017/V37/I5/473

图1  合金钢在3.5%NaCl溶液中浸泡35 h前后的表面形貌
Level A B C D E
1 10 100 50 100 100
2 30 300 100 200 200
3 50 500 150 300 300
4 70 700 200 400 400
表1  五因素四水平正交试验
No. A B C D E Inhibition efficiency / %
1 A1 B1 C1 D1 E1 78.5
2 A1 B2 C2 D2 E2 89.5
3 A1 B3 C3 D3 E3 91.9
4 A1 B4 C4 D4 E4 88.5
5 A2 B1 C2 D3 E4 95.9
6 A2 B2 C1 D4 E3 92.7
7 A2 B3 C4 D1 E2 98.9
8 A2 B4 C3 D2 E1 95.0
9 A3 B1 C3 D4 E2 98.4
10 A3 B2 C4 D3 E1 95.1
11 A3 B3 C1 D2 E4 92.0
12 A3 B4 C2 D1 E3 99.1
13 A4 B1 C4 D2 E3 94.8
14 A4 B2 C3 D1 E4 91.1
15 A4 B3 C2 D4 E1 97.1
16 A4 B4 C1 D3 E2 93.5
I/4(%) 87.1 91.9 89.2 91.9 91.4 ---
II/4(%) 95.6 92.1 95.4 92.8 95.1 ---
III/4(%) 96.1 95.0 94.1 94.1 94.6 ---
IV/4(%) 94.1 94.0 94.3 94.2 91.9 ---
R(%) 9.0 3.1 6.2 2.3 3.7 ---
表2  正交试验结果分析
Factor Sum of square of deviation Degree of freedom F FCritical
A 209.070 3 2.722 5.420
B 26.651 3 0.347 5.420
C 91.789 3 1.195 5.420
D 14.957 3 0.195 5.420
E 41.616 3 0.542 5.420
Error 384.080 15 --- ---
表3  正交试验方差分析
图2  L921A合金钢在添加与未添加缓蚀剂的3.5%NaCl溶液中的腐蚀电位随浸泡时间的变化
图3  L921A合金钢在添加与未添加缓蚀剂的3.5%NaCl溶液中浸泡35 h后的极化曲线
图4  L921A合金钢在添加与未添加缓蚀剂的3.5%NaCl溶液中浸泡35 h后的Nyquist图,阻抗模值图和相角图
图5  基于EIS的等效电路图
Condition Rs / Ωcm2 Rt / Ωcm2 L / Hcm2 R0 / Ωcm2 CPE-Y0 / Ssa α
Without inhibitor 6.119 1.60×103 5.63×10-4 2.44×104 4.79×10-4 7.47×10-1
With inhibitor 7.217 2.08×104 --- --- 1.66×10-4 7.26×10-1
表4  基于EIS的等效电路参数
图6  缓蚀剂膜的覆盖度随浸泡时间的变化
[1] Yu H, Wu J H, Qian J H, et al.Study on the inhibition behavior of a new kind corrosion inhibitor in seawater[J]. J. Chin. Soc. Corros. Prot., 2003, 23(5): 40
[1] (于辉, 吴建华, 钱建华 等. 一种海水缓蚀剂缓蚀行为的研究 [J]. 中国腐蚀与防护学报, 2003, 23(5): 40)
[2] Ivu?i? F, Lahodny-?arc O, ?urkovi? H O, et al. Synergistic inhibition of carbon steel coroosion in seawater by cerium chloride and sodium gluconate[J]. Corros. Sci., 2015, 98: 88
[3] S?ylev T A, Richardson M G.Corrosion inhibitors for steel in concrete: State-of-the-art report[J]. Constr. Build. Mater., 2008, 22: 609
[4] Cao C N.Electrochemical Corrosion [M]. Beijing: Chemical Industry Press, 1994
[4] (曹楚南. 腐蚀电化学 [M]. 北京: 化学工业出版社, 1994)
[5] Goldie B P F, Mccarroll J J. Method of inhibiting metal corrosion in aqueous systems [P]. EP, EP 0136860A2, 1985
[6] Yadav M, Behera D, Sharma U.Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid[J]. Arab. J. Chem., 2016, 9: S1487
[7] Lin Y Z.Corrosion and Corrosion Control Principle [M]. Beijing: Sinopec Press, 2007
[7] (林玉珍. 腐蚀和腐蚀控制原理 [M]. 北京: 中国石化出版社, 2007)
[8] Gaupp R H, Nygren Jr J A. Corrosion inhibitor [P]. US, US3992318 A, 1976
[9] Lin H C.Progress in research of inhibitors[J]. Corros. Sci. Prot. Technol., 1997, 9: 308
[9] (林海潮. 缓蚀剂研究的进展[J]. 腐蚀科学与防护技术, 1997, 9: 308)
[10] Lin Y T, Hou B R.Progress on natural environmental friendly corrosion inhibitors for metals[J]. Corros. Sci. Prot. Technol., 2006, 18: 37
[10] (李言涛, 侯保荣. 天然环保型缓蚀剂近期研究进展[J]. 腐蚀科学与防护技术, 2006, 18: 37)
[11] Yu G J, Tang B.Electrochemical methods of inhibitor research[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 76
[11] (余国骏, 汤兵. 缓蚀剂研究中的电化学方法[J]. 中国腐蚀与防护学报, 2009, 29: 76)
[12] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002: 86
[12] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002: 86
[13] Zhang J T, Hu J M, Zhang J Q, et al.Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS[J]. Prog. Org. Coat., 2004, 51: 145
[14] Orazem M E, Tribollet B.Electrochemical Impedance Spectroscopy[M]. Hoboken: John Wiley & Sons, Inc., 2008
[15] Brug G J, van den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element[J]. J. Electroanal. Chem. Interfacial Electrochem., 1984, 176: 275
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[6] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[7] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[8] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[11] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[12] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[13] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[14] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[15] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.