Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (3): 296-302    DOI: 10.11902/1005.4537.2017.066
  研究报告 本期目录 | 过刊浏览 |
2205双相不锈钢密闭容器中高温初始氧化过程分析
李越1,2, 王剑1,2, 张勇1, 白晋钢1,3, 胡亚迪1,2, 乔永锋1,2, 张彩丽1,2, 韩培德1,2()
1 太原理工大学材料科学与工程学院 太原 030024
2 太原理工大学 新材料界面科学与工程教育部重点实验室 太原 030024
3 太原钢铁集团有限责任公司技术中心 太原 030003
Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature
Yue LI1,2, Jian WANG1,2, Yong ZHANG1,2, Jingang BAI1,3, Yadi HU1,2, Yongfeng QIAO1,2, Caili ZHANG1,2, Peide HAN1,2()
1 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
3 Technology Center of Taiyuan Iron and Steel Group Co. Ltd., Taiyuan 030003, China
全文: PDF(10203 KB)   HTML
摘要: 

研究了密闭容器中2205双相不锈钢于1050 ℃氧化时表面氧化膜的初始形成过程。应用金相显微镜、SEM、Raman光谱仪以及辉光放电光谱仪等表征手段,分析了2205双相不锈钢表层氧化物的形貌、结构和组成。结果表明:氧化初始阶段 (小于3 min),铁素体相和奥氏体相表面的氧化程度及氧化物类型明显不同,铁素体相表面主要形成富铬氧化物,而奥氏体相表面主要形成铁氧化物,氧化初始阶段铁素体相抗氧化能力优于奥氏体相。随着氧化时间的延长 (大于5 min),两相表面富铬和富铁氧化物发生了明显变化,即铁素体相表面的铁氧化物增多,氧化速率加快;而奥氏体相表面的富铬氧化物增加,此时奥氏体相的氧化速率逐渐平缓。氧化过程中,Cr经历了从次表层向表层扩散过程,最终在表层形成了一定厚度的富铬氧化物。密闭环境中,2205双相不锈钢表面极易形成颗粒状氮/氧化物,且在铁素体相表面优先形成;氧化达到一定时间后,奥氏体相表面也开始析出该类型化合物,随着氧化时间的延长其数量越来越多,直至分布于整个试样表面。

关键词 双相不锈钢高温氧化微观结构氧化机制    
Abstract

The initial formation process of oxide scale on 2205 duplex stainless steel at 1050 ℃ was studied in static atmospheric air within a closed container of 304 type stainless steel. The morphology, structure and composition of the formed oxide scale was analyzed by means of metallographic microscope, scanning electron microscope, Raman spectroscopy and glow discharge spectrometer. Results show that at the beginning of oxidation (less than 3 min), the oxidation degree and type of oxides formed on ferrite and austenite phases are obviously different, namely, which on the surface of ferrite phase composed mainly of Cr-rich oxides, while on the austenite phase composed mainly Fe-rich oxides. The oxidation resistance of ferrite phase seems better than that of the austenite phase. With the increase of the oxidation time (more than 5 min), the oxidation rate of the ferrite phase increased while Fe-rich oxides scale thickened on their surface. On the contrary, the Cr-rich oxide scale grew thicker on austenite phases, while their oxidation rate became gradually gentle. With the progress of oxidation, Cr diffused and migrated from sub-surface to the surface, leading to the formation of Cr-rich oxide on the whole surface of the duplex stainless steel. In this confined environment, the surface of the duplex stainless steel is easy to form granular compounds containing nitrogen and oxygen preferably on the ferrite phase, and afterwards these compounds also formed on the austenite. The number of the granular compounds is increasing with oxidation time and finally would cover entirely the steel sample.

Key wordsduplex stainless steel    high temperature oxidation    microstructure    oxidation mechanism
收稿日期: 2017-04-27     
ZTFLH:  TM207  
基金资助:国家自然科学基金 (513771123),山西省自然科学基金 (2014011002-1和201601D202034),教育部博士点博导基金(20131402110003) 及山西省研究生教育创新计划 (2016JD20)
作者简介:

作者简介 李越,女,1990年生,硕士生

引用本文:

李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 296-302.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.066      或      https://www.jcscp.org/CN/Y2018/V38/I3/296

图1  密闭容器及试样放置方式
图2  2205双相不锈钢经1050 ℃固溶处理后的光学显微组织
图3  2205双相不锈钢氧化不同时间后上表面的宏观形貌
图4  经1050 ℃氧化不同时间后2205双相不锈钢表面各相氧化色
图5  经1050 ℃氧化不同时间后2205双相不锈钢的表面形貌
Position Si Cr Mn Fe Ni Mo
α in Fig.5a 0.88 17.71 1.09 45.57 2.39 2.08
γ in Fig.5a 0.56 11.13 1.13 30.44 2.85 0.47
α in Fig.5b 0.63 17.60 1.40 28.99 1.88 1.25
γ in Fig.5b 0.50 13.66 1.27 37.52 3.41 0.95
α in Fig.5c 0.36 13.99 2.58 15.29 0.76 0.59
γ in Fig.5c --- 8.27 2.89 25.30 1.55 0.42
α in Fig5d 3.57 14.25 3.98 21.78 1.16 1.14
γ in Fig.5d 1.30 14.47 2.93 46.27 13.50 1.25
表1  经1050 ℃氧化不同时间后2205双相不锈钢表面氧化膜的EDS分析结果
图6  2205双相不锈钢在1050 ℃氧化60 min后的扫描背散射图及颗粒物EDS分析结果
图7  2205双相不锈钢在1050 ℃氧化不同时间后γ-Fe和α-Fe表面氧化物的Raman谱
图8  氧化10和60 min后氧化试样表层的GDS深度剖析
[1] Badji R, Bouabdallah M, Bacroix B, et al.Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds[J]. Mater. Charact., 2008, 59: 447
[2] Sridhar N, Kolts J.Effects of nitrogen on the selective dissolution of a duplex stainless steel[J]. Corrosion, 1987, 43: 646
[3] Tsai W T, Tsai K M, Lin C J, et al.Selective corrosion in duplex stainless steel[J]. Electrichemistry, 2003, 9: 170
[4] Tsai W T, Chen J R.Galvanic corrosion between the constituent phases in duplex stainless steel[J]. Corros. Sci., 2007, 49: 3659
[5] Fu Y, Lin C J, Luo Y X, et al.A study on the selective dissolution behavior of duplex stainless steel in systems containing nitric acid[J]. J. Chin. Soc. Corros. Prot., 2004, 24(5): 272(付燕, 林昌健, 罗亦旋等. 双相不锈钢在含硝酸体系的优选腐蚀行为研究[J]. 中国腐蚀与防护学报, 2004, 24(5): 272)
[6] Wang M Q, Qian Y H, Qi H B, et al.Oxidation behavior of 304 stainless steel under simulated hot-rolling condition[J]. Corros. Sci. Prot. Technol., 2011, 23: 5(王妙全, 钱余海, 齐慧滨等. 模拟热轧工艺条件下304不锈钢的氧化行为[J]. 腐蚀科学与防护技术, 2011, 23: 5)
[7] Zhao Z, Li J Y, Dong J X, et al.Oxidation behavior during high temperature homo-genization treatment of cast Ni-Fe based corrosion resistant 925 alloy[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 1(赵展, 李景阳, 董建新等. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37: 1)
[8] Jin Q M, Li J, Xu Y L, et al.High-temperature oxidation of duplex stainless steels S32101 and S32304 in air and simulated industrial reheating atmosphere[J]. Corros. Sci., 2010, 52: 2846
[9] Jepson M A E, Higginson R L. The influence of microstructure on the oxidation of duplex stainless steels in simulated propane combustion products at 1000 ℃[J]. Corros. Sci., 2009, 51: 588
[10] Sánchez-Tovar R, Leiva-Garcí R, García-Antón J.Characterization of thermal oxide films formed on a duplex stainless steel by means of confocal-Raman microscopy and electrochemical techniques[J]. Thin Solid Films, 2015, 576: 1
[11] Pérez F J, Cristobal M J, Arnau G, et al.High-temperature oxidation studies of low-nickel austenitic stainless steel. Part I: Isothermal oxidation[J]. Oxid. Met., 2001, 55: 105
[12] Ohtsuka T, Kubo K, Sato N.Raman spectroscopy of thin corrosion films on iron at 100 to 150 ℃ in air[J]. Corrosion, 1986, 42: 476
[13] Beattie I R, Gilson T R.The single-crystal Raman spectra of nearly opaque materials. Iron (III) oxide and chromium (III) oxide[J]. J. Chem. Soc. A., 1970, 1: 980
[14] Da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment[J]. Corros. Sci., 1998, 40: 447
[15] Lamri S, Langlade C, Kermouche G, et al.Estimation of the stress relief induced in CrN thin films by buckling[J]. Mater. Sci. Eng.,2010, A527: 7912
[16] Bautista A, Velasco F, Campos M, et al.Oxidation behavior at 900 ℃ of austenitic, ferritic, and duplex stainless steels manufactured by powder metallurgy[J]. Oxid. Met., 2003, 59: 373
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[3] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[4] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[5] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[6] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[7] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[8] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[9] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[10] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[11] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[12] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[13] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[14] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[15] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.