Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (5): 435-443    DOI: 10.11902/1005.4537.2017.058
  研究报告 本期目录 | 过刊浏览 |
镁合金表面无机-有机杂化硅膜的制备及其防护性能研究
张新芳,欧孝通,刘雷,雷惊雷,李凌杰()
重庆大学化学化工学院 重庆 400044
Preparation and Protective Properties of Inorganic-organic Hybrid Silane-coatings on Mg-alloy AZ31
Xinfang ZHANG,Xiaotong OU,Lei LIU,Jinglei LEI,Lingjie LI()
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
全文: PDF(1219 KB)   HTML
摘要: 

通过在正硅酸乙酯水解过程中加入硅烷偶联剂得到了杂化硅溶胶,进而采用提拉法在AZ31镁合金表面制备了无机-有机杂化硅膜。利用SEM和AFM观察了膜层的表面形貌,利用XPS和FT-IR分析了膜层的组成,通过动电位极化曲线和EIS研究了膜层的防护性能。结果表明,杂化膜层均匀、致密,完整覆盖在镁合金基体表面;杂化膜层的阻值 (1.717×104 Ωcm2) 大于传统铬酸盐转化膜的阻值 (1.611×104 Ωcm2),样品的腐蚀电流密度相对于裸金属的下降了约2个数量级。硅烷偶联剂的位阻效应可以有效调节传统的正硅酸乙酯水解缩聚过程,使形成的杂化硅溶胶在成膜时不易产生团簇,保证了膜层的致密完整,从而能够很好地阻挡腐蚀介质的渗透,对镁合金发挥良好的防护作用。

关键词 镁合金杂化硅膜耐蚀性能成膜机制    
Abstract

The hybrid silane sol was prepared by adding silane coupling agent in the hydrolyzing tetraethyl orthosilicate (TEOS), and then the organic-inorganic hybrid silane-coating was successfully prepared on the AZ31 Mg-alloy using a simple dip-coating method. The morphology and composition of the hybrid coating were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersion spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Moreover, the corrosion resistance of the hybrid silane-coating was studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the Mg-alloy substrate was completely covered with organic-inorganic hybrid silane-coating, which was uniform and compact. The resistance of the hybrid silane-coating (1.717×104 Ωcm2) is higher than that of the conventional chromate conversion coating (1.611×104 Ωcm2), and correspondingly, the corrosion current density of the AZ31 alloy with coating is about 2 orders of magnitude lower than that of the bare alloy. The steric effect of the silane coupling agent can effectively adjust the traditional hydrolysis polycondensation process of TEOS and prevent the hybrid silane sol from further clustering. The as-prepared coating is compact and uniform, which can resist the corrosive medium and provide excellent protection for Mg-alloy.

Key wordsmagnesium alloy    hybrid silane-coating    corrosion resistance    formation mechanism
收稿日期: 2017-04-20     
基金资助:国家自然科学基金 (21273293和21573028),重庆市杰出青年基金 (cstc2014jcyjjq100004) 及中央高校基本科研业务费 (106112016CDJZR225515)
作者简介: 张新芳,女,1990年生,硕士生

引用本文:

张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
Xinfang ZHANG, Xiaotong OU, Lei LIU, Jinglei LEI, Lingjie LI. Preparation and Protective Properties of Inorganic-organic Hybrid Silane-coatings on Mg-alloy AZ31. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 435-443.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.058      或      https://www.jcscp.org/CN/Y2017/V37/I5/435

图1  膜层表面SEM、AFM形貌图和元素面分布
图2  膜层表面的XPS全谱及F 1s,O 1s,Si 2p和C 1s的高分辨谱
图3  膜层的FT-IR结果
图4  不同镁合金试样在0.005 mol/L NaCl溶液中的极化曲线
Sample Ecorr(vs SCE)
V
bc
mVdec-1
ba
mVdec-1
Icorr
Acm-2
Blank -1.525 158.5 111.4 7.76×10-5
CCC -1.449 182.7 133.0 6.58×10-6
HC -1.467 137.8 81.6 8.24×10-7
表1  解析图4极化曲线所得电化学参数
图5  不同镁合金试样在0.005 mol/L NaCl溶液中的EIS和相应的等效电路图
Sample Rs / Ωcm2 Yc / Ω-1cm-2sn n Rc / Ωcm2 Cc / μFcm-2 Rt / Ωcm2 Cdl / μFcm-2
Blank 5.5 --- --- --- --- 2.712×103 0.37
CCC 6.9 53.02×10-6 0.89 1.611×104 40.32 --- ---
HC 10.3 5.81×10-6 0.71 1717×104 4.52 --- ---
表2  解析图5中EIS所得的各参数值
图6  杂化硅膜试样在0.005 mol/L NaCl溶液中于不同浸泡时间的EIS及等效电路图
Time / h Rs / Ωcm2 Yc / Ω-1cm-2sn n Rc / Ωcm2 Cc / μFcm-2 Rt / Ωcm2 Cdl / μFcm-2
1 5.09 5.09×10-6 0.89 1.023×104 4.77 5.570×103 2.9
2 7.12 5.42×10-6 0.89 9.479×103 5.09 4.967×103 3.4
3 7.25 5.80×10-6 0.89 9.476×103 5.51 4.897×103 4.0
4 7.31 6.26×10-6 0.89 9.437×103 5.85 4.919×103 4.8
5 6.27 6.47×10-6 0.89 1.017×104 6.05 5.056×103 5.0
6 5.12 6.77×10-6 0.88 1.118×104 6.18 5.675×103 6.2
表3  解析图6中EIS所得的各参数值
图7  不同镁合金试样在0.005 mol/LNaCl溶液中浸泡不同时间的数码照片
图8  不同镁合金试样在0.005 mol/L NaCl溶液中浸泡不同时间的光学显微像
[1] Pan T J, Wang T.Corrosion performance and preparation of polyaniline film on the surface of AZ91 magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34(6): 489
[1] (潘太军, 汪涛. AZ91镁合金表面合成聚苯胺涂层及其腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 489)
[2] Li L J, Li F J, Lei J L, et al.Research progress in effect of alloying elements on anti-corrosion performance of magnesium alloys[J]. Mater. Rev., 2011, 25(10): 110
[2] (李凌杰, 李芳君, 雷惊雷等. 合金元素对镁合金耐腐蚀性能影响的研究进展[J]. 材料导报, 2011, 25(10): 110)
[3] Li L J, Yu S H, Lei J L, et al.Corrosion electrochemical behavior of AZ31 and AZ61 magnesium alloys in simulated sea water[J]. Electrochemistry, 2008, 14(1): 95
[3] (李凌杰, 于生海, 雷惊雷等. AZ31和AZ61镁合金在模拟海水中的腐蚀电化学行为[J]. 电化学, 2008, 14(1): 95)
[4] Cui X J, Wang R, Wei J S, et al.Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on AZ31B Mg alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34(6): 495
[4] (崔学军, 王荣, 魏劲松等. 电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 495)
[5] Liu Y, Liu S M, Yu L P, et al.Summary on corrosion behavior and micro-arc oxidation for magnesium alloys[J]. J. Chin. Soc. Corros. Prot., 2015, 35(2): 99
[5] (刘胤, 刘时美, 于鲁萍等. 镁合金的腐蚀与微弧氧化膜层研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 99)
[6] Liu Y, Wei Z L, Yang F W, et al.Effect of electrolyte constituents on properties of anodic coatings of magnesium alloys[J]. J. Chin. Soc. Corros. Prot., 2011, 31(4): 255
[6] (刘妍, 卫中领, 杨富魏等. 电解液组成对镁合金阳极氧化膜性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 255)
[7] Li L J, Yu S H, Lei J L, et al.Study on time-dependent electrochemical corrosion behavior of AZ31 magnesium alloy in NaCl medium[J]. Ordnance Mater. Sci. Eng., 2008, 31(6): 8
[7] (李凌杰, 于生海, 雷惊雷等. NaCl介质中AZ31镁合金的动态电化学腐蚀行为研究[J]. 兵器材料科学与工程, 2008, 31(6): 8)
[8] Li L J, Lei J L, Zhang S T, et al.Progress in research of rare earth conversion coatings on magnesium alloys[J]. J. Mater. Eng., 2006, (10): 60
[8] (李凌杰, 雷惊雷, 张胜涛等. 镁合金稀土转化膜研究进展[J]. 材料工程, 2006, (10): 60)
[9] Zhou L L, Yi D Q, Deng S H, et al.A new environment-friendly anodizing process for magnesium alloys[J]. J. Chin. Soc. Corros. Prot., 2006, 26(3): 176
[9] (周玲伶, 易丹青, 邓姝皓等. 镁合金环保型阳极氧化工艺研究[J]. 中国腐蚀与防护学报, 2006, 26(3): 176)
[10] Shi H Y, Yang C J, Zhang M.Corrosion resistance of micro-arc oxidation and sol-gel composite coating on magnesium alloy by cyclic Heat-NaCl solution spray/dry test[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 435
[10] (时惠英, 杨朝静, 张勉. AZ31B镁合金表面微弧氧化-溶胶凝胶复合膜层干、湿热交替条件下耐蚀性研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 435)
[11] Li Y, Cai S, Xu G H, et al.Synthesis and characterization of a phytic acid/mesoporous 45S5 bioglass composite coating on a magnesium alloy and degradation behavior[J]. RSC Adv., 2015, 5: 25708
[12] Diaz L, García-Galván F R, Llorente I, et al. Effect of heat treatment of magnesium alloy substrates on corrosion resistance of a hybrid organic-inorganic sol-gel film[J]. RSC Adv., 2015, 5: 105735
[13] Yang X D, Liu G M.Research on organic silicone/SiO2 hybrid materials prepared by the method of sol-gel[J]. Surf. Technol., 2012, 41(4): 103
[13] (杨晓东, 刘光明. 溶胶-凝胶法制备有机硅/SiO2杂化材料的研究进展[J]. 表面技术, 2012, 41(4): 103)
[14] Qiao Y J, Li W P, Wang G X, et al.Application of ordered mesoporous silica nanocontainers in an anticorrosive epoxy coating on a magnesium alloy surface[J]. RSC Adv., 2015, 5: 47778
[15] Jia X L, Liu J C, Wang C Z, et al.Preparation of organic/inorganic hybrid material by the sol-gel process and its application in UV cured coating[J]. J. Jiangnan Univ., 2011, 10(2): 206
[15] (贾秀丽, 刘敬成, 王成志等. 溶胶-凝胶法制备有机/无机杂化材料及其在光固化涂料中的应用[J]. 江南大学学报, 2011, 10(2): 206)
[16] Ju W J, Zhao W J, Zhang X, et al.Influence of TEOS content on anti-corrosion property of mercapto functional organic silane based sol-gel coatings on copper alloy surface[J]. J. Chin. Soc. Corros. Prot., 2016, 36(1): 52
[16] (睢文杰, 赵文杰, 张星等. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52)
[17] Tang Z H, Ge J F.Development of SiO2-organic hybrids prepared by sol-gel process of tetraethylorthosilicate[J]. New Chem. Mater., 2010, 38(7): 32
[17] (唐正华, 葛建芳. TEOS溶胶-凝胶法制备SiO2-有机杂化材料研究进展[J]. 化工新型材料, 2010, 38(7): 32)
[18] Zou Z L, Ma J F.Research progress on the modification of organic silanefilm on magnesium alloy surface[J]. Mater. Prot., 2014, 47(6): 45
[18] (邹忠利, 马金福. 镁合金表面有机硅烷膜掺杂改性的研究进展[J]. 材料保护, 2014, 47(6): 45)
[19] Gao J, Tu Y H, Li J Q.Degradation of paints on magnesium alloys and influence of chromate conversion coating[J]. Corros. Sci. Prot. Technol., 2005, 17(3): 169
[19] (高瑾, 涂运骅, 李久青. 镁合金涂装保护体系失效特性及铬酸盐转化膜的影响[J]. 腐蚀科学与防护技术, 2005, 17(3): 169)
[20] Shi Y L, Feng X J, Yang W, et al.Superhydrophobicity of ZnO microrod films induced by surface silane modification[J]. Chin. J. Appl. Chem., 2011, 28(4): 402
[20] (石彦龙, 冯晓娟, 杨武等. 硅烷表面修饰引发的ZnO微米棒膜的超疏水性[J]. 应用化学, 2011, 28(4): 402)
[21] Castanho S M, Moreno R, Fierro J L G. Influence of process conditions on the surface oxidation of silicon nitride green compacts[J]. J. Mater. Sci., 1997, 32: 157
[22] Kloprogge J T, Duong L V, Wood B J, et al.XPS study of the major minerals in bauxite: Gibbsite, bayerite and (Pseudo-) boehmite[J]. J. Coll. Interface Sci., 2006, 296: 572
[23] Alexander M R, Payan S, Duc T M.Interfacial interactions of plasma-polymerized acrylic acid and an oxidized aluminium surface investigated using XPS, FTIR and poly(acrylic acid) as a model compound[J]. Surf. Interface Anal., 1998, 26: 961
[24] Jafari R, Menini R, Farzaneh M.Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings[J]. Appl. Surf. Sci., 2010, 257: 1540
[25] Xu P R, Liu G M, Cao Z J, et al.Effect of dodecafluoroheptylpropylmethyldimethoxysilane content on the properties of fluorinated organosilicon/silica hybrid coating[J]. Electroplat. Finish., 2014, 33(18): 795
[25] (徐佩柔, 刘光明, 曹祖军等. 十二氟庚基丙基甲基二甲氧基硅烷含量对含氟有机硅/二氧化硅杂化涂层性能的影响[J]. 电镀与涂饰, 2014, 33(18): 795)
[26] Xu W J, Song J L, Jing S, et al.Rapid fabrication of large-area, corrosion-resistant superhydrophobic mg alloy surfaces[J]. ACS Appl. Mater. Interfaces, 2011, 3(11): 4404
[27] Xu Q F, Wang J N, Sanderson K D.Organic-inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability[J]. ACS Nano, 2010, 4(4): 2201
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[9] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[10] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[12] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[13] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[14] 陈琳, 钟福荣, 昝金龙. 复合电解液中AZ31B镁合金的放电特性及电压滞后[J]. 中国腐蚀与防护学报, 2018, 38(2): 197-202.
[15] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.