Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 183-190    DOI: 10.11902/1005.4537.2017.054
  研究报告 本期目录 | 过刊浏览 |
Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为
刘丹阳1,2, 汪洁霞1, 李劲风1,2(), 陈永来3, 张绪虎3, 许秀芝3, 郑子樵1
1 中南大学材料科学与工程学院 长沙 410083
2 中南大学 有色金属先进结构材料与制造协同创新中心 长沙 410083
3 航天材料及工艺研究所 北京 100076
Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn
Danyang LIU1,2, Jiexia WANG1, Jinfeng LI1,2(), Yonglai CHEN3, Xuhu ZHANG3, Xiuzhi XU3, Ziqiao ZHENG1
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
3 Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
全文: PDF(4697 KB)   HTML
摘要: 

采用熔铸法制备了Mg,Ag,Zn含量不同的4种铝锂合金。研究了上述铝锂合金在T6态时效下晶间腐蚀 (IGC) 行为,并总结出4种不同的晶间腐蚀典型形态。结果表明,Mg,Zn,Mg+Zn微合金化的Al-Cu-Li合金随着时效时间的延长表现的晶间腐蚀变化趋势一致。和添加Mg相比,单独添加Zn的Al-Cu-Li合金晶间腐蚀敏感性较弱。Mg+Ag微合金化Al-Cu-Li合金出现与其他3种合金不同的晶间腐蚀形态,其原因是晶界出现了大量连续的T1相,与临近晶界的无组织沉淀带 (PFZ) 存在电位差,导致阳极溶解的发生。

关键词 铝锂合金晶间腐蚀微合金化    
Abstract

Ingots of four Al-Cu-Li alloys with different amounts of micro-alloying elements of Mg, Zn and Ag respectively were prepared via melt and casting technique, which were successively hot- and cold-rolled to produce sheets of 2 mm in thickness and finally subjected to T6 aging treatment. Further,the intergranular corrosion behavior of the above T6 aged alloys was studied in solution of 57 g /L NaCl+10 mL/L H2O2. The result showed that the Al-Cu-Li alloys with micro-alloying element of Mg, Zn, and Mg+Zn respectively present more or less the same evolution tendency of intergranular corrosion behavior, namely, local IGC emerges at the initial aging stage, general IGC at the under peak aging stage, local IGC at the peak aging stage and pitting with slight IGC at the over-peak aging stage with the prolonging T6 heat treatment. But the IGC susceptibility of the Zn- alloyed Al-Cu-Li alloy is weaker than that of the Mg-alloyed one. Intergranular corrosion morphology of Mg+Ag-alloyed Al-Cu-Li alloy was different from that of the above three alloys, showing pitting with IGC at peak aging stage, local IGC or general IGC at other aging stages. The mechanism of intergranular corrosion of Mg+Ag-alloyed Al-Cu-Li Alloy is anodic dissolution derived by the potential-difference between the precipitates free zone (PFZ) and numerous amount of continuous precipitates of T1 phase at grain boundaries.

Key wordsAl-Cu-Li alloy    intergranular corrosion    micro-alloying
收稿日期: 2017-04-13     
基金资助:国家科学基金 (TDZX-17-005-1)
作者简介:

作者简介 刘丹阳,男,1986年生,博士生

引用本文:

刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
Danyang LIU, Jiexia WANG, Jinfeng LI, Yonglai CHEN, Xuhu ZHANG, Xiuzhi XU, Ziqiao ZHENG. Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 183-190.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.054      或      https://www.jcscp.org/CN/Y2018/V38/I2/183

Alloy Cu Li Mg Ag Zn Mn Zr Al
2#(Zn) 3.34 1.20 --- --- 0.4 0.3 0.1 Bal.
3#(Mg) 3.26 1.07 0.4 --- --- 0.3 0.1 Bal.
4#(Mg+Zn) 3.34 1.16 0.4 --- 0.4 0.3 0.1 Bal.
5#(Mg+Ag) 3.28 1.07 0.4 0.4 --- 0.3 0.1 Bal.
表1  4种Al-Cu-Li合金的化学成分
图1  铝锂合金截面腐蚀形貌
图2  2#合金 (只含Zn) 的时效硬化曲线及不同时间时效后典型截面腐蚀形貌
图3  3#合金 (只含Mg) 的时效硬化曲线及不同时间时效后典型截面腐蚀形貌
图4  4#合金(含Mg+Zn)的时效硬化曲线及不同时间时效后典型截面腐蚀形貌
图5  5#合金(含Mg+Ag)的时效硬化曲线及不同时间时效后典型截面腐蚀形貌照片
Aging-T6-175 ℃ Dominant corrosion mode IGC depthμm Max IGC depthμm Pitting corrosion depthμm Max pitting depthμm
Alloy Time / h
Mg
(3#)
0.5 Local IGC with pitting 167.98 270.70 127.60 178.13
3 Local IGC with pitting 99.22 100.50 109.10 138.28
4 Local IGC with pitting 270.12 321.68 158.04 208.60
28 Pitting --- --- 162.01 239.65
36 Pitting --- --- 144.00 220.02
40 Pitting --- --- 125.73 162.01
64 Pitting --- --- 113.78 161.14
80 Pitting --- --- 145.15 218.85
120 Pitting --- --- 169.21 254.88
Zn
(2#)
0.5 Local IGC with pitting 176.23 253.72 78.32 128.91
4 Local IGC with pitting 170.88 232.91 70.25 113.67
28 Pitting --- --- 116.87 148.83
36 Pitting --- --- 107.69 151.76
40 Pitting --- --- 144.50 198.93
45 Pitting --- --- 163.71 196.00
57 Pitting --- --- 144.30 217.68
64 Pitting --- --- 146.07 212.11
72 Pitting --- --- 83.13 108.98
120 Pitting --- --- 143.35 204.49
表2  2#和3#合金的主要腐蚀类型、晶间腐蚀和坑蚀统计结果
Aging-T6-175 ℃ Dominant corrosion mode IGC depthμm Max IGC depthμm Pitting corrosion depthμm Max pitting depthμm
Alloy Time / h
Mg+Zn (4#) 0.5 Local IGC with pitting 136.11 187.50 121.99 195.12
4 Local IGC with pitting 112.18 249.32 36.63 41.90
28 Pitting --- --- 120.82 165.53
36 Pitting --- --- 142.84 176.37
40 Pitting --- --- 112.86 173.44
64 Pitting --- --- 160.76 212.16
80 Pitting --- --- 139.75 291.5
120 Pitting --- --- 140.63 222.66
Mg+Ag (5#) 0.5 Local IGC with pitting 155.74 191.60 106.40 174.03
4 Local IGC with pitting 175.43 215.04 106.00 123.05
28 Local IGC with pitting 149.10 252.25 119.27 228.22
36 Local IGC with pitting 125.10 148.84 111.96 139.45
40 Local IGC with pitting 147.31 195.12 108.32 147.66
64 Local IGC with pitting 122.83 143.26 111.69 162.01
80 Local IGC with pitting 184.04 248.15 104.01 145.02
120 Local IGC with pitting 137.34 181.06 109.51 131.55
表3  4#和5#合金的主要腐蚀类型、晶间腐蚀和坑蚀统计结果
图6  3#,4#和5#合金在T6峰时效 (28 h) 状态下的TEM像
[1] Zhang Y, Zhu Z Q, Wang Z F, et al.Intergranular and exfoliation corrosion behavior of Al-Li alloys[J]. J. Chin. Soc. Corros. Prot., 1992, 12(2): 180(张匀, 朱自勇, 王政富等. 铝锂合金的晶间腐蚀和剥落腐蚀行为[J]. 中国腐蚀与防护学报, 1992, 12(2): 180)
[2] Rioja R J, Denzer D K, Mooy D, et al.Lighter and stiffer materials for use in space vehicles [A]. Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13)[C]. Pittsburg, 2012: 593
[3] Zhou M, Li S C, Zheng Z Q, et al.Effect of microelements on the microstructural evolution of Al-Ag alloys during initial aging stage by Kinetic monte carlo model[J]. Rare Met. Mater. Eng., 2007, 36(8): 1336(周明, 李世晨, 郑子樵等. 微量元素对Al-Ag合金时效早期微结构演变影响的Kinetic Monte Carlo模拟研究[J]. 稀有金属材料与工程, 2007, 36(8): 1336)
[4] Zheng Z Q, Li J F, Chen Z G, et al.Alloying and microstructural evolution of Al-Li alloys[J]. Chin. J. Nonferrous Met., 2011, 21(10): 2337(郑子樵, 李劲风, 陈志国等. 铝锂合金的合金化与微观组织演化[J]. 中国有色金属学报, 2011, 21(10): 2337)
[5] Fridlyander I N, Senatorova O G, Uksusnikov A N, et al. Influence of different minor additions on structure and properties of high-strength Al-Zn-Mg-Cu alloy sheets [J]. Mater. Sci. Forum, 2000, 331-337: 1249
[6] Li J F, Zhang Z, Zhang J Q, et al.Review of research on corrosion behavior of Al-Li alloys[J]. J. Chin. Soc. Corros. Prot., 2003, 23(5): 61(李劲风, 张昭, 张鉴清等. 铝锂合金腐蚀性能研究综述[J]. 中国腐蚀与防护学报, 2003, 23(5): 61)
[7] Lin Y, Zheng Z Q, Han Y, et al.Effects of heat treatment process on tensile and corrosion properties of 2A97 Al-Li alloy[J]. Chin. J. Nonferrous Met., 2012, 22(8): 2181(林毅, 郑子樵, 韩烨等. 热处理工艺对2A97铝锂合金拉伸性能和腐蚀性能的影响[J]. 中国有色金属学报, 2012, 22(8): 2181)
[8] Cai C, Li J F, Wang H, et al.Dependence of intergranular corrosion sensitivity of Al-Li alloys on aging stage[J]. Rare Met. Mater. Eng., 2015, 44(10): 2523(蔡超, 李劲风, 王恒等. 铝锂合金晶间腐蚀敏感性与时效阶段的相关性[J]. 稀有金属材料与工程, 2015, 44(10): 2523)
[9] Li J F, Chen Y L, Zhang X H, et al.Influence of Cu and Li contents on mechanical properties and microstructures of Mg-, Ag- and Zn-microalloyed Al-Li alloys[J]. Aerosp. Mater. Technol., 2015, 45(2): 24(李劲风, 陈永来, 张绪虎等. Cu、Li含量对Mg、Ag、Zn复合微合金化铝锂合金力学性能及微观组织的影响[J]. 宇航材料工艺, 2015, 45(2): 24)
[10] Meng X M, Ma Y L, Huang W J, et al.Microstructure of the new aluminum lithium alloys and its influences on localized corrision[J]. Mater. Rev., 2014, 28(13): 82(孟晓敏, 麻彦龙, 黄伟九等. 新型铝锂合金的微观组织及其在局部腐蚀中的作用[J]. 材料导报, 2014, 28(13): 82)
[11] Cassada W A, Shiflet G J, Starke E A.Mechanism of Al2CuLi (T1) nucleation and growth[J]. Metall. Mater. Trans., 1991, 22A: 287
[12] Li J F, Li C X, Peng Z W, et al.Corrosion mechanism associated with T1 and T2 precipitates of Al-Cu-Li alloys in NaCl solution[J]. J. Alloy. Compd., 2008, 460: 688
[13] Li J F, Zheng Z Q, Li S C, et al.Simulation study on function mechanism of some precipitates in localized corrosion of Al alloy[J]. Corros. Sci., 2007, 49(6): 2436
[14] Chen Z G, Li S C, Liu Z Y, et al.Computer simulation of microstructural evolution of microalloyed Al-4.0Cu-0.3Mg alloys[J].Chin. J. Nonferrous Met., 2004, 14(8): 1274(陈志国, 李世晨, 刘祖耀等. 微合金化Al-4.0Cu-0.3Mg合金时效初期微结构演变的计算机模拟[J]. 中国有色金属学报, 2004, 14(8): 1274)
[15] Li S C, Zheng Z Q, Liu Z Y, et al.Monte Carlo simulation of microstructural evolution of Al-Cu-Li-xMg alloys during initial ageing stage[J]. Chin. J. Nonferrous Met., 2005, 15(9): 1376(李世晨, 郑子樵, 刘祖耀等. Al-Cu-Li-xMg合金时效初期微结构演变的Monte Carlo模拟[J]. 中国有色金属学报, 2005, 15(9): 1376)
[1] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[2] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[3] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[4] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[5] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[6] 王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[7] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[8] 苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
[9] 彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[10] 许龙, 姚希, 李劲风, 蔡超. 2099铝锂合金晶间腐蚀行为与时效制度的相关性[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[11] 俞树荣,何燕妮,李淑欣,王璐. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[12] 冯万里,张乐福,马明娟. 轧制变形对690合金特殊晶界比例及耐晶间腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[13] 饶思贤,万章,宋光雄,张铮,钟群鹏. 基于规则的晶间腐蚀和氢致开裂的失效模式诊断[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.
[14] 胡轶嵩,王俭秋,柯伟,韩恩厚. 690TT合金在高温含铅碱液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(6): 427-432.
[15] 孙涛,邓博, 徐菊良,李劲,蒋益明. 氮、铌添加对304奥氏体不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.