Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (3): 265-273    DOI: 10.11902/1005.4537.2017.052
  研究报告 本期目录 | 过刊浏览 |
植酸转化膜对环氧清漆防腐性能的影响
常亮, 师超, 邵亚薇(), 王艳秋, 刘斌, 孟国哲
哈尔滨工程大学材料科学与化学工程学院腐蚀与防护实验室 哈尔滨 150001
Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating
Liang CHANG, Chao SHI, Yawei SHAO(), Yanqiu WANG, Bin LIU, Guozhe MENG
Corrosion and Protection Laboratory, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
全文: PDF(5508 KB)   HTML
摘要: 

利用电化学阻抗谱 (EIS)、扫描电镜 (SEM)、Fourier红外光谱 (FT-IR)、附着力测试等技术,研究了植酸转化液作为前处理技术对环氧带锈涂装涂料防腐性能的影响。结果表明,植酸转化液使锈层与基体附着牢固,对带锈涂装涂料的附着力、防腐蚀性能均有提高,所形成的植酸转化膜由内部致密层和外部较疏松的植酸铁两部分构成,且表面富含PO43-和OH-等官能团,利于植酸转化膜与环氧涂层形成牢固的附着,从而提高带锈涂装涂料的附着力和防腐蚀性能。

关键词 植酸转化液带锈涂装环氧涂层防腐蚀性能    
Abstract

Effect of pretreatment of rust Q235 carbon steel with phytic acid solution on the corrosion resistance of epoxy coating was studied by means of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and adhesion test. The results showed that this pretreatment process could enhanced the adhesion of the rust scale to the matrix, thereby enhance the adhesive strength and corrosion protectiveness on property of the epoxy coating obviously. Which might be attributed to that the phytic acid conversion film consisted of a dense inner layer and a loose outer layer rich in PO43- and OH- functional groups. This could improve the adhesion between the phytic acid conversion film and epoxy coating, therewith enhance the adhesion and corrosion protectiveness of the entired composite coating.

Key wordsphytic acid conversion solution    rusty paint    epoxy coating    corrosion protection
收稿日期: 2017-04-11     
ZTFLH:  TG174.46  
基金资助:国家重点研发计划 (2016YFB0300604) 和中央高校基本科研业务费专项资金 (HEUCFZ1502)
作者简介:

作者简介 常亮,男,1992年生,硕士生

引用本文:

常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 265-273.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.052      或      https://www.jcscp.org/CN/Y2018/V38/I3/265

图1  喷砂与带锈基体上环氧清漆涂层的附着力随浸泡时间变化图
图2  不同涂层的附着力随浸泡时间的变化图
图3  带锈基体上EP和PA/EP涂层的EIS谱随时间的变化曲线
图4  涂层的低频阻抗模值随浸泡时间的变化
图5  等效电路图
图6  涂层电荷转移电阻随浸泡时间的变化
图7  涂层腐蚀电位随浸泡时间的变化
图8  不同涂层经3.5%NaCl溶液浸泡9000 h后去除涂层前后Q235钢表面的腐蚀宏观形貌
图9  涂覆涂层的带锈Q235钢经3.5%NaCl溶液浸泡9000 h后的表面腐蚀形貌
图10  锈层及植酸转化膜FT-IR谱
图11  锈层及植酸转化膜截面SEM像
图12  涂层截面的SEM像
图13  植酸转化膜截面的SEM像以及相应的EDS线扫描元素分布图
[1] Ai Q, Yi S Z, Jiao B, et al.Studies on the preparation and performance of water-soluble rusty coating[J]. Plat. Finish., 2014, 36(8): 30(艾青, 衣守志, 焦斌等. 水溶性带锈涂料制备及性能研究[J]. 电镀与精饰, 2014, 36(8): 30)
[2] Roselli S N, del Amo B, Carbonari R O, et al. Painting rusted steel: The role of aluminum phosphosilicate[J]. Corros. Sci., 2013, 74: 194
[3] Lyon S B, Bingham R, Mills D J.Advances in corrosion protection by organic coatings: What we know and what we would like to know[J]. Prog. Org. Coat., 2017, 102: 2
[4] Du K M.Status and development trend of rusty paint[J]. Shanghai Coat., 2010, 48(1): 33(杜克敏. 带锈涂料现状及其发展趋势[J]. 上海涂料, 2010, 48(1): 33)
[5] Cui S L, Tian J W, Kong D F, et al.Preparation and properties of environmentally friendly rust inhibitor[J]. J Chongqing Univ. Art. Sci., 2016, 35: 116(崔世亮, 田军武, 孔德福等. 环保型植酸防锈剂的制备及防锈性能研究[J]. 重庆文理学院学报, 2016, 35: 116)
[6] Shen S, Zhu C D, Guo X Y, et al.The synergistic mechanism of phytic acid monolayers and iodide ions for inhibition of copper corrosion in acidic media[J]. RSC Adv., 2014, 4: 10597
[7] Wei F H, Li M Q, Guo X J, et al.Effects of phytic acid on protection performance of film formed on pure magnesium by ultrasonic micro-arc oxidation[J]. China Surf. Eng., 2015, 28(2): 78(魏方红, 李慕勤, 郭小娟等. 植酸对纯镁超声微弧氧化层防护性能的影响[J]. 中国表面工程, 2015, 28(2): 78)
[8] Xu Q J, Qi H, Zhou X J, et al.Research progress of phytic acid green water treatment corrosion inhibitor[J]. Corros. Prot., 2009, 30: 75(徐群杰, 齐航, 周小晶等. 新型绿色缓蚀剂植酸的研究进展[J]. 腐蚀与防护, 2009, 30: 75)
[9] Zhang R Y, Cai S, Xu G H, et al.Crack self-healing of phytic acid conversion coating on AZ31 magnesium alloy by heat treatment and the corrosion resistance[J]. Appl. Surf. Sci., 2014, 313: 896
[10] Hong D H.Introduction of rust grade and derusting grade of steel surface before painting[J]. China Standard., 1989, (8): 14(洪栋煌. GB8923—88《涂装前钢材表面锈蚀等级和除锈等级》介绍[J]. 中国标准化, 1989, (8): 14)
[11] Li Q M.Study on improvement in adhesion and corrosion resistance of organic coatings [D]. Shanghai: East China University of Science and Technology, 2013(李庆敏. 提高有机涂层附着力及耐蚀性能的研究 [D]. 上海: 华东理工大学, 2013)
[12] Yang Y X.Test of wet state adhesion of anti-corrosion coatings[J]. Shanghai Coat., 1991, 29(1): 38(杨幼心. 重防腐蚀涂料湿态附着力测试[J]. 上海涂料, 1991, 29(1): 38)
[13] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2004(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2004)
[14] Liu X W, Xiong J P, Lv Y W, et al.Study on corrosion electrochemical behavior of several different coating systems by EIS[J]. Prog. Org. Coat., 2009, 64: 497
[15] Yuan X, Yue Z F, Chen X, et al.EIS study of effective capacitance and water uptake behaviors of silicone-epoxy hybrid coatings on mild steel[J]. Prog. Org. Coat., 2015, 86: 41
[16] Song S Z.Corrosion Electrochemical Research Methods [M]. Beijing: Chemical Industry Press, 1988(宋诗哲. 腐蚀电化学研究方法 [M]. 北京: 化学工业出版社, 1988)
[17] Gao H F, Tan H Q, Li J, et al.Synergistic effect of cerium conversion coating and phytic acid conversion coating on AZ31B magnesium alloy[J]. Surf. Coat. Technol., 2012, 212: 32
[18] Zhang R Y, Cai S, Xu G H, et al.Crack self-healing of phytic acid conversion coating on AZ31 magnesium alloy by heat treatment and the corrosion resistance[J]. Appl. Surf. Sci., 2014, 313: 896
[19] Jiang G P, Qiao J L, Hong F.Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC[J]. Int. J. Hydrogen Energy, 2012, 37: 9182
[20] Li Y, Ma Y T, Lei B, et al.Enhancement of adhesion of several organic coatings on rusted structural steel by a treatment process[J]. Corros. Sci. Prot. Technol., 2015, 27: 129(李洋, 马元泰, 雷冰等. 一种带锈处理工艺与多种常用有机涂层附着力配套性研究[J]. 腐蚀科学与防护技术, 2015, 27: 129)
[21] Iglesias J, de Salda?a E G, Jaén J A. On the tannic acid interaction with metallic iron[J]. Hyperfine Interact., 2001, 134: 109
[1] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[2] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[3] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[4] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[5] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[6] 张山,周丽娜,简璐,王煦. 聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[7] 孙伟, 尹桂来, 刘福春, 唐囡, 韩恩厚, 万军彪, 柯伟, 邓静伟. 装载缓蚀剂的纳米SiO2对环氧涂层耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 2015, 35(5): 447-454.
[8] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[9] 元辛, 岳珠峰, 温世峰, 李磊. 铝合金表面有机硅环氧涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 375-381.
[10] 刘樱,刘莉,李瑛,王福会. 高静水压力对水在环氧涂层中传输行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 203-209.
[11] 石秋梅,邵亚薇,张涛,孟国哲,陈琪昊. 磷酸锌对环氧涂层划痕的保护尺寸研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
[12] 唐俊文,邵亚薇,张涛,孟国哲,王福会. 循环压力对环氧涂层在模拟深海环境中失效行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 275-281.
[13] 曹佳 邵亚薇 张涛 孟国哲. 磷酸锌对环氧涂层破损处金属的缓蚀作用[J]. 中国腐蚀与防护学报, 2009, 29(6): 437-441.
[14] 田惠文 李伟华 宗成中 侯保荣. 纳米SiO2改性环氧涂层的防腐性能[J]. 中国腐蚀与防护学报, 2009, 29(5): 365-370.
[15] 邵亚薇; 严川伟; 杜元龙; 王福会 . 钛酸酯偶联剂对纳米Ti粉在环氧树脂中分散性的影响[J]. 中国腐蚀与防护学报, 2005, 25(4): 232-236 .