Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (3): 255-264    DOI: 10.11902/1005.4537.2017.047
  研究报告 本期目录 | 过刊浏览 |
Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析
曹海娇1,2, 魏英华1(), 赵洪涛1, 吕晨曦1, 毛耀宗1, 李京1
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating
Haijiao CAO1,2, Yinghua WEI1(), Hongtao ZHAO1, Chenxi LV1, Yaozong MAO1, Jing LI1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(9830 KB)   HTML
摘要: 

通过EIS研究了210 ℃下基体的预热时间对熔结环氧粉末涂层/Q345钢体系失效行为的影响,利用SEM和 EDS对涂层底部金属表面的腐蚀产物进行了分析,探讨了涂层体系结合性能与涂层下金属基体腐蚀过程的相关性。结果表明,基体的预热时间对涂层体系结合性能影响显著,结合性能的差异导致涂层下金属基体腐蚀过程不同。基体预热时间为0和2 h时,涂层体系结合性能差,涂层/金属界面处富氧,涂层下金属腐蚀反应开始较早,阴极反应主要为O2还原反应,金属基体腐蚀向纵深发展速率快,金属基体易发生点蚀;基体预热时间为6和12 h时,涂层体系结合性能好,涂层下金属腐蚀反应开始较晚,涂层/金属界面处贫氧,铁氧化物参与阴极反应,金属基体腐蚀横向发展快,更接近于均匀腐蚀行为。

关键词 熔结环氧粉末涂层预热时间电化学阻抗谱结合性能金属基体腐蚀行为    
Abstract

The effect of substrate preheating time at 210 ℃ on the degradation behavior of fusion bonded epoxy powder coating/Q345 steel system was studied by electrochemical impedance spectroscopy (EIS). The corrosion products of the substrate beneath the coating were characterized by means of scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Results showed that the substrate preheating time had a significant effect on the adhesion of the coating to the substrate, which led to the different corrosion behavior of the metal substrate beneath the coating. The coating exhibited poor bonding performance when the substrate preheating time was less than 2 h, which resulted in the occurrence of premature corrosion of the substrate metal. This might be due to the oxygen enrichment in the interface gap of coating/metal and the cathode reaction was mainly O2 reduction reaction. In this case, the corrosion of the substrate metal developed rapidly along the depth and the substrate metal was prone to pitting. When the substrate preheating time was 6 and 12 h, the coating showed good bonding performance and the corrosion reaction of the substrate metal beneath the coating happened much later. This could be supposed that the excellent adhesion of the coating made the oxygen deprivation at the interface of coating/metal and iron oxide was reduced in the cathode reaction. The corrosion of the substrate metal developed laterally and the corrosion behavior was closer to be uniform corrosion.

Key wordsfusion bonded epoxy powder coating    preheating time    electrochemical impedance spectroscopy    adhesion property    corrosion behavior of metal substrate
收稿日期: 2017-03-27     
ZTFLH:  TG174.5  
基金资助:中国科学院A类战略性先导科技专项 (XDA13040500)
作者简介:

作者简介 曹海娇,女,1991年生,硕士生

引用本文:

曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 255-264.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.047      或      https://www.jcscp.org/CN/Y2018/V38/I3/255

图1  预热0 h的涂层体系在60 ℃下3.5%NaCl溶液中浸泡不同时间的Nyquist图
图2  预热2 h的涂层体系在60 ℃下3.5%NaCl溶液中浸泡不同时间的Nyquist图
图3  预热6 h的涂层体系在60 ℃下3.5%NaCl溶液中浸泡不同时间的Nyquist图
图4  预热12 h的涂层体系在60 ℃下3.5%NaCl溶液中浸泡不同时间的Nyquist图
图5  熔结环氧涂层体系等效电路图
图7  4种涂层体系在60 ℃下3.5%NaCl溶液中浸泡218 d后的表面宏观形貌
图8  预热0 h的涂层体系在60 ℃下3.5%NaCl溶液中浸泡218 d后基体金属腐蚀区的SEM像
图9  预热0 h的涂层体系在60 ℃下3.5%NaCl溶液中浸泡218 d后基体金属腐蚀区的EDS结果
图10  预热2 h的涂层体系在60 ℃下3.5%NaCl溶液中浸泡218 d后基体金属腐蚀区的SEM像和EDS结果
图11  预热6 h的涂层体系在60 ℃下3.5%NaCl溶液中浸泡218 d后基体金属腐蚀区SEM像和EDS结果
图12  预热12 h的涂层体系在60 ℃下3.5%NaCl溶液中浸泡218 d后基体金属腐蚀区SEM像和EDS结果
[1] Cao H J, Wei Y H, Zhao H T, et al.Effect of preheating time on protective performance of fusion bonded epoxy powder coating on Q345 steel I: Analysis of interface bonding[J]. J. Chin. Soc. Corros. Prot., 2018, 38: 124(曹海娇, 魏英华, 赵洪涛等. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响I: 界面结合性能分析[J]. 中国腐蚀与防护学报, 2018, 38: 124)
[2] Liu D, Wu F, Zhao W J, et al.Advance in anticorrosion performance of epoxy resin[J]. Mater. China, 2015, 34: 852(刘丹, 伍方, 赵文杰等. 环氧树脂防腐性能研究进展[J]. 中国材料进展, 2015, 34: 852)
[3] Elsner C I, Cavalcanti E, Ferraz O, et al.Evaluation of the surface treatment effect on the anticorrosive performance of paint systems on steel[J]. Prog. Org. Coat., 2003, 48: 50
[4] Jamali S S, Mills D J.Steel surface preparation prior to painting and its impact on protective performance of organic coating[J]. Prog. Org. Coat., 2014, 77(12): 2091
[5] Vakili H, Ramezanzadeh B, Amini R.The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings[J]. Corros. Sci., 2015, 94: 466
[6] Wielant J, Posner R, Hausbrand R, et al.Cathodic delamination of polyurethane films on oxide covered steel-Combined adhesion and interface electrochemical studies[J]. Corros. Sci., 2009, 51: 1664
[7] Cho K, Cho E C.Effect of the microstructure of copper oxide on the adhesion behavior of epoxy/copper leadframe joints[J]. J. Adhes. Sci. Technol., 2000, 14: 1333
[8] Zhao H T, Lu W Z, Li J, et al.Electrochemical behavior of solvent-free epoxy coating at simulated flowing sea water in erosion condition[J]. J. Chin. Soc. Corros. Prot., 2016, 36(4): 295(赵洪涛, 陆卫中, 李京等. 无溶剂环氧防腐涂层在模拟海水冲刷条件下的电化学行为[J].中国腐蚀与防护学报, 2016, 36(4): 295)
[9] Zhang J T, Hu J M, Zhang J Q, et al.Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution[J]. Prog. Org. Coat., 2004, 49: 293
[10] Guan M R.The action mechanism of anion Cl- on pitting corrosion[J]. J. Qingdao Inst. Arch. Eng., 1997, 18(3): 95(管明荣. Cl-离子对孔蚀的作用机理[J]. 青岛建筑工程学院学报, 1997, 18(3): 95)
[11] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[12] Leng A, Streckel H, Stratmann M.The delamination of polymeric coatings from steel. Part 1: Calibration of the Kelvinprobe and basic delamination mechanism[J]. Corros. Sci., 1998, 41: 547
[13] Lai C X.Water induced mechanism of protective film peeling and its prevention[J]. Corros. Sci. Prot. Technol., 1992, 4: 127(赖春晓. 水引起保护涂膜剥离的机理及防止方法[J]. 腐蚀科学与防护技术, 1992, 4: 127)
[14] Hoffmann K, Stratmann M.In-situ M??bauer spectroscopic investigations of phase transformations in iron oxide layers below organic coatings[J]. Ber. Bunsenges. Phys. Chem., 1989, 93: 1389
[15] Leng A, Streckel H, Hofmann K, et al.The delamination of polymeric coatings from steel. Part 3: Effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal/polymer interface[J]. Corros. Sci., 1998, 41: 599
[16] Deflorian F, Rossi S.An EIS study of ion diffusion through organic coatings[J]. Electrochim. Acta, 2006, 51: 1736
[17] Zhao Z Y, Wang J.Progresses in cathodic delamination of organic coatings from metals[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 116(赵增元, 王佳. 有机涂层阴极剥离作用研究进展[J]. 中国腐蚀与防护学报, 2008, 28: 116)
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[7] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响I:界面结合性能分析[J]. 中国腐蚀与防护学报, 2018, 38(2): 124-132.
[8] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[9] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[10] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[11] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[12] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[15] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.