Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 124-132    DOI: 10.11902/1005.4537.2017.046
  研究报告 本期目录 | 过刊浏览 |
Q345钢预热时间对熔结环氧粉末涂层防护性能的影响I:界面结合性能分析
曹海娇1,2, 魏英华1(), 赵洪涛1, 吕晨曦1, 毛耀宗1, 李京1
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 SteelI: Analysis of Interface Bonding
Haijiao CAO1,2, Yinghua WEI1, Hongtao ZHAO1, Chenxi LV1, Yaozong MAO1, Jing LI1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(11436 KB)   HTML
摘要: 

通过拉伸实验和湿附着力评级实验,研究了210 ℃下基体的预热时间对熔结环氧粉末涂层/Q345钢界面结合性能的影响。结果表明,预热时间对涂层体系结合性能影响显著,Q345基体在210 ℃下预热6 h其结合性能达到最佳。采用CLSM、AFM和XPS等表面测试技术分别对基体表面形貌、粗糙度和化学成分进行表征,并探讨基体表面状态与涂层体系结合性能的相关性。结果表明,预热处理使得Q345基体表面生成致密氧化膜,氧化膜成分由外到内依次为Fe2O3层和Fe3O4层。随着预热时间延长,表层Fe2O3厚度基本不变,内层Fe3O4逐渐增厚,基体表面粗糙度改变;基体表面粗糙度的改变影响涂层体系结合性能。

关键词 熔结环氧粉末涂层预热时间结合性能基体表面状态    
Abstract

The effect of substrate preheating time on the interface bonding of fusion bonded epoxy powder coating/Q345 substrate was investigated by means of tensile test and wet adhesion test. Results showed that the preheating time presents significant effect on the interface bonding of coating/Q345 substrate, and among others, the best bonding performance could be acquired for the substrate being preheated for 6 h at 210 ℃. The surface morphology, roughness and chemical composition of the substrate were characterized by CLSM, AFM, XPS, and the correlation between the surface state of the substrate and the bonding performance of coating/substrate was inquired into. Results revealed that the preheating treatment resulted in the formation of a dense oxide scale on the surface of Q345 substrate, which composed of an outer layer Fe2O3 and an inner layer Fe3O4. With the prolonging preheating time, the thickness of Fe2O3 layer was almost the same and the inner layer Fe3O4 became thicker, whilst the surface roughness of the substrate changed gradually. The change of the surface roughness of the substrate affected the bonding performance of the coating/substrate system.

Key wordsfusion bonded epoxy powder coating    preheating time    bonding performance    surface state of substrate
收稿日期: 2017-03-27     
基金资助:中国科学院A类战略性先导科技专项 (XDA13040500)
作者简介:

作者简介 曹海娇,女,1991年生,硕士生

引用本文:

曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响I:界面结合性能分析[J]. 中国腐蚀与防护学报, 2018, 38(2): 124-132.
Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 SteelI: Analysis of Interface Bonding. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 124-132.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.046      或      https://www.jcscp.org/CN/Y2018/V38/I2/124

图1  基体经不同时间预热处理的涂层体系的粘结强度
图2  基体经不同时间预热处理的涂层体系的拉伸断口形貌图
图3  预热不同时间的涂层体系在90 ℃蒸馏水中的湿附着力评级结果
图4  90 ℃蒸馏水中浸泡1 d后4种涂层体系剥离情况
图5  90 ℃蒸馏水中浸泡4 d后4种涂层体系剥离情况
图6  4种涂层体系在90 ℃蒸馏水中浸泡5 d后表面的CLSM像
图7  Q345钢基体210 ℃下加热12 h及Ar+溅射10 s后的XPS全谱
图8  预热不同时间的Q345钢基体表面经Ar+溅射不同时间的Fe2p的XPS谱
图9  经不同时间预热处理的Q345钢基体表面的XPS深度刻蚀图
图10  预热处理不同时间的基体表面形貌的宏观照片和CLSM像
图11  210 ℃预热处理的基体表面粗糙度随加热时间的变化
图12  Q345钢在210 ℃下空气中加热时氧化过程示意图
图13  210 ℃下预热不同时间基体表面的AFM像
[1] Kehr J A, Enos D G.FBE, a foundation for pipeline corrosion coatings [R]. Houston: NACE International, 2000
[2] Nan R Z.Powder Coating and Coating Technology [M]. 3rd Ed. Beijing: Chemical Industry Press, 2014: 441(南仁植. 粉末涂料与涂装技术 [M]. 第3版. 北京: 化学工业出版社, 2014: 441)
[3] Palimi M J, Peymannia M, Ramezanzadeh B.An evaluation of the anticorrosion properties of the spinel nanopigment-filled epoxy composite coatings applied on the steel surface[J]. Prog. Org. Coat., 2015, 80: 164
[4] Liu D, Wu F, Zhao W J, et al.Advance in anticorrosion performance of epoxy resin[J]. Mater. China, 2015, 34: 852(刘丹, 伍方, 赵文杰等. 环氧树脂防腐性能研究进展[J]. 中国材料进展, 2015, 34: 852)
[5] Elsner C I, Cavalcanti E, Ferraz O, et al.Evaluation of the surface treatment effect on the anticorrosive performance of paint systems on steel[J]. Prog. Org. Coat., 2003, 48: 50
[6] Wang Z P, Xie Z, Li L, et al.The influence of steel surface treatment process on epoxy resin coating adhesion[J]. Total Corros. Control, 2013, 27(11): 60(王志鹏, 谢众, 李龙等. 钢材表面处理工艺对环氧涂层附着力的影响[J]. 全面腐蚀控制, 2013, 27(11): 60)
[7] Jamali S S, Mills D J.Steel surface preparation prior to painting and its impact on protective performance of organic coating[J]. Prog. Org. Coat., 2014, 77: 2091
[8] Cho K, Cho E C.Effect of the microstructure of copper oxide on the adhesion behavior of epoxy/copper leadframe joints[J]. J. Adhes. Sci. Technol., 2000, 14: 1333
[9] Li W C, Zhang M M, Qiao J F, et al.Preparation and properties of phosphating and silane films on cold rolled steel[J]. Corros. Prot., 2015, 36: 334(李文超, 张明明, 乔静飞等. 冷轧钢表面磷化膜和硅烷膜的制备与性能[J]. 腐蚀与防护, 2015, 36: 334)
[10] Vakili H, Ramezanzadeh B, Amini R.The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings[J]. Corros. Sci., 2015, 94: 466
[11] Liu B, Fang Z G, Wang H B, et al.Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment[J]. Prog. Org. Coat., 2013, 76: 1814
[12] S?rensen P A, Kiil S, Dam-Johansen K, et al.Anticorrosive coatings: a review[J]. J. Coat. Technol. Res., 2009, 6: 135
[13] NIST XPS database.
[14] Mi W B, Jiang E Y, Bai H L.Fe3+/Fe2+ ratio controlled magnetic and electrical transport properties of polycrystalline Fe3(1-δ)O4 films[J]. J. Phys.: Appl. Phys., 2009, 42D: 105007
[15] Fujii T, De Groot F M F, Sawatzky G A, et al. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy[J]. Phys. Rev., 1999, 59B: 3195
[16] Aronniemi M, Sainio J, Lahtinen J.Chemical state quantification of iron and chromium oxides using XPS: The effect of the background subtraction method[J]. Surf. Sci., 2005, 578: 108
[17] Wielant J, Goossens V, Hausbrand R, et al.Electronic properties of thermally formed thin iron oxide films[J]. Electrochim. Acta, 2007, 52: 7617
[18] Li M S.High Temperature Corrosion of Metals [M]. Bejing: Metallurgical Industry Press, 2001: 111(李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 111)
[19] Bertrand N, Desgranges C, Poquillon D, et al.Iron oxidation at low temperature (260~500 ℃) in air and the effect of water vapor[J]. Oxid. Met., 2010, 73(1/2): 139
[20] Bahlakeh G, Ghaffari M, Saeb M R, et al.A close-up of the effect of iron oxide type on the interfacial interaction between epoxy and carbon steel: Combined molecular dynamics simulations and quantum mechanics[J]. Phys. Chem., 2016, 120C: 11014
[1] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.