Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (6): 533-542    DOI: 10.11902/1005.4537.2017.042
  本期目录 | 过刊浏览 |
含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析
刘东,向红亮(),刘春育
1. 福州大学机械工程及自动化学院 福州 350116
XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel
Dong LIU,Hongliang XIANG(),Chunyu LIU
1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
全文: PDF(5152 KB)   HTML
摘要: 

采用X射线光电子能谱技术 (XPS) 研究了含Ag抗菌双相不锈铸钢在有菌环境中经电化学极化后的表面腐蚀产物。结果表明:添加纯Ag颗粒制备的不锈钢经1150 ℃固溶处理后,其钝化膜表层中的Ag主要以Ag2+氧化物和游离态的形式存在,Cr主要以CrO2,CrO3和Cr(OH)3形式存在,而添加150~300 μm Cu-Ag中间合金颗粒制备的不锈钢经1150 ℃固溶处理后,其钝化膜表层中的Ag主要以Ag2+,Ag+和Ag2/3+氧化物形式存在,Cr以CrO2、Cr2O3和CrO3等多价态铬氧化物形式共存,且与前者相比,添加150~300 μm Cu-Ag中间合金颗粒制备的材料其钝化膜中Cr2O3、钼氧化物和MoO42-的含量更多,而α-FeOOH和Cr(OH)3等氢氧化合物以及水合物的含量更少,表明其钝化膜的稳定性优于添加纯Ag颗粒制备的材料。

关键词 含Ag抗菌双相不锈钢钝化膜XPS技术    
Abstract

Silver-bearing antibacterial duplex stainless steels were prepared by adding silver granules (code name A) or 150~300 μm Cu-Ag particles (code name B) respectively. The two steels were then subjected to solid solution treatment at 1150 ℃. The surface passive films formed on the two steels after potentiodynamic polarization test in bacteria bearing liquid were analyzed by X-ray photoelectron spectroscopy (XPS). The results indicated that there exist silver as atomic Ag and oxide AgO, while chromium as CrO2, CrO3and Cr(OH)3in the surface passive film of the steel A. However silver as oxides of AgO, Ag2O and Ag3O, while Cr as chromic oxides of multi-valence present in the surface passive film of the steel B. In comparison with the passive film on the steel A, that on the steel B has higher amount of Cr2O3, molybdenum oxides and MoO42-, but lower amount of hydroxides/hydrates, meaning that the stability of the passive film on the steel B is better.

Key wordssilver-bearing antibacterial duplex stainless steel    passive film    XPS technology
收稿日期: 2017-03-17     
ZTFLH:  TG174.3  
基金资助:福建省重大专项专题(2017HZ0001);福建省产业技术联合创新专项(FG-2016001);福建省教育厅中青年科研项目(JAT160066);福州市科技计划项目(2018-G-68);和福建省海洋高新产业发展专项 (闽海渔高新 (2014)14)
通讯作者: 向红亮     E-mail: hlxiang@fzu.edu.cn
Corresponding author: Hongliang XIANG     E-mail: hlxiang@fzu.edu.cn
作者简介: 刘东,男,1984年生,实验师

引用本文:

刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
Dong LIU, Hongliang XIANG, Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 533-542.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.042      或      https://www.jcscp.org/CN/Y2018/V38/I6/533

图1  试样A与B在无菌/有菌环境下的极化曲线
SampleTime / s529.9 eV (M—OH)530.7 eV (M—O)531.5 eV (M—O)532.0 eV (M—OH)533.2 eV (H2O)
A016.1660.902.3412.428.18
106.0776.110.0010.856.97
203.3474.300.0019.752.61
303.3982.310.0012.741.55
B018.3215.8449.288.007.56
1025.2839.826.7825.252.87
2014.9570.360.0011.591.10
3015.0484.060.000.000.90
表1  O1s结合能及对应价态相对含量
图2  试样A与B钝化膜表层O1s的窄区XPS扫描谱
图3  试样A与B钝化膜表层Ag3d5/2的窄区XPS扫描谱
SampleTime / s

367.40 eV

(AgO)

367.70 eV

(AgF)

367.80 eV

(Ag2O)

368.00 eV

(AgO)

368.10 eV

(Ag)

368.16 eV

(Ag)

368.23 eV

(Ag)

368.40 eV

(Ag3O)

A027.295.6011.0513.3515.608.667.5410.91
1025.160.0016.0312.840.0024.6516.205.11
2014.360.0019.3213.3219.1013.7120.370.00
3011.250.0024.110.0021.4443.200.000.00
B021.985.0614.3826.080.005.943.2423.32
1014.660.0031.6219.8416.410.007.4310.04
2018.250.0038.650.0024.046.0412.840.00
3012.340.0032.300.0038.5716.790.000.00
表2  Ag3d5/2结合能及对应价态相对含量
SampleTime / s707.0 eV (Fe)708.2 eV (Fe3O4)709.4 eV (FeO)710.8 eV (Fe2O3)711.8 eV (FeOOH)
A031.825.2430.6123.558.78
1024.6032.3215.7716.6510.66
2031.5734.9213.0714.815.63
3046.5730.4812.0110.940.00
B043.8020.0412.3418.685.13
1045.1915.9220.4618.430.00
2041.5414.6038.235.630.00
3044.4310.2436.838.500.00
表3  Fe2p3/2结合能及对应价态相对含量
图4  试样A与B钝化膜表层Fe2p3/2的窄区XPS扫描谱
图5  试样A与B钝化膜表层Cr2p的窄区XPS扫描谱
SampleTime / S574.3 eV (Cr)576.3 eV (CrO2)576.8 eV (Cr2O3)577.3 eV (Cr(OH)3)578.3 eV (CrO3)
A07.5044.240.0023.2824.98
1019.7542.077.3320.1410.71
2045.630.0044.210.0010.16
3050.170.0048.700.001.13
B011.6434.6921.5611.6020.51
1011.5012.1875.540.000.78
2032.490.0067.160.000.35
3040.680.0058.480.000.84
表4  Cr2p结合能及对应价态相对含量
图6  试样A与B钝化膜表层Mo3d5/2的窄区XPS扫描谱
SampleTime / s228.0 eV (Mo)228.8 eV (MoCl3)229.3 eV (MoO2)230.9 eV (MoO2)231.5 eV (MoO3)232.7 eV (MoO42-)
A00.000.367.8738.3119.9033.55
1037.260.0016.9611.6720.4713.64
2081.180.0018.820.000.000.00
3083.730.0016.270.000.000.00
B00.000.976.9711.939.6470.49
1023.340.000.004.5872.080.00
2040.380.000.0059.620.000.00
3046.050.000.0053.950.000.00
表5  Mo3d5/2结合能及对应价态相对含量
[1] Zhang Y,Li Q,Wang S G.Corrosion resistance of 2507 duplex stainless steel in NaClO solution[J]. J. Mater. Eng.,2016,44(1):108
[1] 张艳,李倩,王胜刚.2507双相不锈钢在NaClO溶液中的腐蚀性能[J].材料工程,2016,44(1):108
[2] Santamaria M,Di Franco F,Di Quarto F,et al.Photoelectrochemical and XPS characterisation of oxide layers on 316L stainless steel grown in high-temperature water[J]. J. Solid State Electrochem.,2015,19(2):3511
[3] Tardio S,Abel M L,Carr R H.Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS[J]. J Vac. Sci. Technol. A,2015,33(5):1
[4] Wang Y W,Jiang R J,Zhao J M.The properties of passive films formed on 316L and 316LN stainless steel in high-temperature and high-salinity solution[J]. J Univ Beijing. Chem. Tech. (Nat. Sci.),2017,44(5):72
[4] 王育武,姜瑞景,赵景茂.316L和316LN不锈钢在高温高盐溶液中钝化膜的性能研究[J].北京化工大学学报 (自然科学版),2017,44(5):72
[5] Xiang H L,Guo P P,Liu D.Microstructure and antibacterial properties of Ag-bearing duplex stainless steel[J].Acta Metall. Sin.,2014,50:1210
[5] 向红亮,郭培培,刘东.含Ag抗菌双相不锈钢组织及抗菌性能研究[J].金属学报,2014,50:1210
[6] Feng D M,Wang J Q,Wu W H.Introduction to Electronic Spectroscopy (XPS/XAES/UPS)[M].Beijing:National Defence Industry Press,1992
[6] 冯大明,王建祺,吴文辉.电子能谱学 (XPS/XAES/UPS) 引论[M].北京:国防工业出版社,1992)
[7] Liu S H.X-ray Photoelectron Spectroscopy Analysis[M].Beijing:Science Press,1988
[7] 刘世宏.X射线光电子能谱分析[M].北京:科学出版社,1988)
[8] Liu G Q,Zhu Z Y,Ke W.The pitting of stainless and nickel-based alloys in acetic acid solution containing bromine ion[J].Acta Metall. Sin.,2001,37:275
[8] 刘国强,朱自勇,柯伟.不锈钢及镍基合金在含溴醋酸中的点蚀行为[J].金属学报,2001,37:275
[9] Zhang L,Han E-H,Zhang Z E,et al.The corrosion of stainless steel and nickel base alloys in subcritical water condition[J].Acta Metall.Sin.,2003,39:649
[9] 张丽,韩恩厚,张召恩等.不锈钢及镍基合金在亚临界水环境中的腐蚀[J].金属学报,2003,39:649
[10] Wang Z C,Zhang Y Z,Zhou S M,et al.Corrosion compositions of carbon steel under ion-selective coatings by XPS[J]. J Chin. Soc. Corros. Prot., 2001,21:273
[10] 王周成, 张瀛洲, 周绍民等. 离子选择性涂层下碳钢表面腐蚀产物的XPS分析[J].中国腐蚀与防护学报,2001,21:273
[11] Kumagai M,Myung S,Asaishi R,et al.High nitrogen stainless steel as bipolar plates for proton exchange membrane fuel cells[J]. J. Power Sources,2008,54(3):815
[12] He G,Gao Q W.Corrosion performance of enviroment-friendly chemical conversion films on mild steel[J].Corros. Sci. Prot. Technol.,2009,21:66
[12] 何刚,高勤卫.钢铁表面环保型杂多酸化学转化膜的耐蚀性[J].腐蚀科学与防护技术,2009,21:66
[13] Huang C,Shih C.Effects of nitrogen and high temperature aging onσphase precipitation of duplex stainless steel[J].Mater. Sci. Eng.,2005,A402(1/2):66
[14] Maurice V,Yang W P,Marcus P.X-Ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surfaces[J]. J. Electrochem. Sci.,1998,145(3):909
[15] Xu C C,Wu X M.Mechanism of MoO42-retarding the development of the local corrosion in 304 stainless steel/Cl-solution[J].Chin. J. Mater. Res.,2002,16:354
[15] 许淳淳,吴小梅.MoO42-抑制AISI304不锈钢局部腐蚀的机理[J].材料研究学报,2002,16:354
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[4] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[5] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[6] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[7] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[8] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[9] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[10] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[11] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[12] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[13] 吴欣强,付尧,柯伟,徐松,冯兵,胡波涛,陆佳政. 高氮奥氏体不锈钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[14] 孟向楠,陈旭,吴明,赵阳,范裕文. 静水压力对X100钢在NaHCO3+NaCl溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[15] 李阳恒,左禹,唐聿明,赵旭辉. 应变作用下Q235碳钢在NaHCO3+NaCl溶液中的孔蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.