Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 203-209    DOI: 10.11902/1005.4537.2017.030
  研究报告 本期目录 | 过刊浏览 |
含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为
黄勇, 王善林(), 王帅星, 龚玉兵, 柯黎明
南昌航空大学 轻合金加工国防重点学科实验室 南昌 330063
Corrosion Resistance of Fe-based Bulk Metallic Glass with Sulfide Inclusions in HCl Solution
Yong HUANG, Shanlin WANG(), Shuaixing WANG, Yubing GONG, Liming KE
Light Alloy Processing Science and Defence Technology Key Laboratory, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(2289 KB)   HTML
摘要: 

采用电化学测试技术以及浸泡实验对含硫化物夹杂的铁基块体非晶合金在HCl溶液中的腐蚀行为进行了研究。结果表明,该非晶合金在不同浓度以及不同温度的HCl溶液中均呈现出明显的钝化特征,其耐蚀性能随着溶液浓度和温度的升高而逐渐降低;Nyquist曲线均只有一个容抗弧,电极系统的Faraday过程均由电极电位控制。浸泡腐蚀后的SEM形貌特征表明:硫化物颗粒对铁基非晶合金的腐蚀无明显影响,未诱发明显点蚀。

关键词 硫化物夹杂铁基非晶耐蚀性能HCl溶液    
Abstract

The corrosion behavior of Fe-based bulk metallic glass with sulfide inclusions in HCl solution was investigated by electrochemical test technique and immersion test. Results showed that the Fe-based bulk metallic glass presented obvious passivation characteristic in solutions with various amount of HCl at different temperature, however its corrosion resistance gradually decreased with the increasing HCl-concentration and temperature. The as-casted amorphous alloy had just only one capacitive loop, which indicated that the faraday process of the electrode system was controlled by the electrode potential. The SEM corrosion morphology after immersion tests showed that sulfide inclusions presented non-obvious influence on the corrosion behavior of Fe-based bulk metallic glass, whilst non-obvious pitting corrosion was triggered.

Key wordssulfide inclusion    Fe-based bulk metallic glass    corrosion resistance    HCl solution
收稿日期: 2017-02-22     
基金资助:国家自然科学基金 (51461031),江西省科技重点研发计划 (20161BBH80031) 和江西省教育厅基金 (GJJ150733)
作者简介:

作者简介 黄勇,男,1989年生,硕士生

引用本文:

黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
Yong HUANG, Shanlin WANG, Shuaixing WANG, Yubing GONG, Liming KE. Corrosion Resistance of Fe-based Bulk Metallic Glass with Sulfide Inclusions in HCl Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 203-209.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.030      或      https://www.jcscp.org/CN/Y2018/V38/I2/203

Alloy C Si B P Cr Mn Ti Al Ni Ca O N S Fe
Fe-C 4.28 0.46 --- 0.20 --- 0.20 0.03 --- 0.09 --- --- --- 0.04 94.70
Fe-P 0.02 0.01 --- 26.28 --- 0.69 0.35 --- --- 0.01 --- --- 0.01 72.63
Fe-B 0.17 0.65 19.75 0.04 --- 0.21 --- 0.05 --- --- 0.02 0.01 --- 79.10
Fe-Cr 1.43 0.33 --- 0.02 55.49 --- --- --- --- --- 0.24 0.01 --- 42.48
Fe-S 0.22 1.13 --- --- --- --- --- --- --- --- 1.29 --- 49.7 47.64
表1  工业原材料的化学成分表
图1  块体非晶铸棒的XRD谱
图2  块体非晶铸棒断口形貌和内部A区放大图
图3  夹杂颗粒的EDS分析结果
图4  非晶铸棒在不同浓度的HCl溶液中的动电位极化曲线
C(HCL) / molL-1 Icorr / μAcm-2 Ipass / μAcm-2 Ecorr / V Epit-Epass / V Rs / Ωcm-2 CPE / μFcm-2 Rp / Ωcm-2
0.1 9.57 117.48 -0.38 1.32 50.73 14.28 50177.00
0.5 56.49 682.33 -0.43 1.35 6.96 7.42 43840.00
1 50.12 1166.82 -0.33 1.26 5.88 25.17 20809.00
2 148.25 2297.21 -0.43 1.11 4.29 30.11 16385.00
4 524.81 1548.82 -0.17 1.11 2.61 74.33 16566.00
表2  非晶铸棒在不同浓度的HCl溶液中动电位极化曲线和电化学阻抗谱的电化学参数拟合结果
图5  非晶铸棒在不同浓度HCl溶液中的恒电位阳极极化曲线
图6  非晶铸棒试样在不同浓度HCl溶液中的电化学阻抗谱及其等效电路
图7  非晶铸棒试样在不同温度的HCl溶液中的动电位极化曲线
Temp. / ℃ Icorr / μAcm-2 Ipass / μAcm-2 Ecorr / V Epit-Epass / V Rs / Ωcm-2 CPE / μFcm-2 Rp / Ωcm-2
20 33.88 154.88 -0.32 1.24 5.88 25.17 28209.00
40 111.17 382.82 -0.28 1.21 4.78 108.27 6169.00
60 125.31 954.99 -0.32 1.13 4.00 499.41 733.90
表3  非晶铸棒试样在不同温度下HCl溶液中动电位极化曲线和电化学阻抗谱的部分拟合结果
图8  非晶铸棒试样在不同温度的HCl溶液中的恒电位阳极极化曲线
图9  非晶铸棒试样在不同温度的HCl溶液中的EIS谱
图10  非晶铸棒试样在0.5 mol/L HCl溶液中浸泡不同时间后的腐蚀形貌
[1] Inoue A, Shen B L, Takeuchi A.Fabrication, properties and applications of bulk glassy alloys in late transition metal-based systems[J]. Mater. Sci. Eng., 2006, A441: 18
[2] Hashimoto K.2002 W.R. Whitney award lecture: In pursuit of new corrosion-resistant alloys[J]. Corrosion, 2002, 58: 715
[3] Lu Z P, Liu C T, Thompson J R, et al.Structural amorphous steels[J]. Phys. Rev. Lett., 2004, 92: 245503
[4] Zohdi A, Bozorg M, Arabi R, et al.Corrosion performance and metal ion release of amorphous and nanocrystalline Fe-based alloys under simulated body fluid conditions[J]. Mater. Lett., 2013, 94: 193
[5] Chen Q J, Yu H Y, Zhou X L, et al.Effect of crystalline behavior on corrosion resistance of Fe-based bulk amorphous alloy[J]. Hot Work. Technol., 2012, 41(8): 1(陈庆军, 余慧燕, 周贤良等. 晶化行为对Fe基块体非晶合金腐蚀性能的影响[J]. 热加工工艺, 2012, 41(8): 1)
[6] Botta W J, Berger J E, Kiminami C S, et al.Corrosion resistance of Fe-based amorphous alloys[J]. J. Alloy. Compd., 2014, 586: S105
[7] Li X, Qin C L, Kato H, et al.Mo microalloying effect on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0.76Si0.096B0.084P0.06)100-xMox bulk glassy alloys[J]. J. Alloy. Compd.,2011, 509: 7688
[8] Souza C A C, May J E, Bolfarini L, et al. Influence of composition and partial crystallization on corrosion resistance of amorphous Fe-M-B-Cu(M=Zr, Nb, Mo) alloys[J]. J. Non-Cryst. Solids, 2001, 284: 99
[9] Wang Y, Zheng Y G, Wang J Q, et al.Passivation behavior of Fe-based amorphous metallic coating in NaCl and H2SO4 solutions[J]. Acta Metall. Sin., 2015, 51: 49(王勇, 郑玉贵, 王建强等. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为[J]. 金属学报, 2015, 51: 49)
[10] Wang S L, Cheng J C, Yi S H, et al.Precipitation of sulfide particle in situ formed in Fe-based bulk metallic glass[J]. Foundry, 2013, 62: 491(王善林, 成京昌, 李承勋等. 大块铁基非晶中硫化物析出行为研究[J]. 铸造, 2013, 62: 491)
[11] Li H X, Lu Z P, Yi S.Estimation of the glass forming ability of the Fe-based bulk metallic glass Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 that contains non-metallic inclusions[J]. Met. Mater. Int., 2009, 15: 7
[12] Li G, Huang L, Dong Y G, et al.Corrosion behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk amorphous alloys in different media[J]. Sci. Sin. Phys., Mech. Astron., 2010, 40: 717(李工, 黄蕾, 董雁国等. Fe65.5Cr4Mo4Ga4P12C5B5.5块体非晶合金不同介质中的腐蚀行为[J]. 中国科学: 物理学力学天文学, 2010, 40: 717)
[13] Wang L, Chao Y S.Corrosion behaviors of bulk amorphous Fe41Co7Cr15Mo14C15B6Y2 alloy in NaOH solution[J]. J. Funct. Mater., 2010, 41: 1849(王莉, 晁月盛. 铁基块体非晶合金在NaOH溶液中的腐蚀行为[J]. 功能材料, 2010, 41: 1849)
[14] Qin H P, Chen H T, Lang Y P, et al.Mechanism of induced pitting corrosion in 439M ferritic stainless steel[J]. Iron Steel, 2015, 50(9): 81(覃怀鹏, 陈海涛, 郎宇平等. 439M铁素体不锈钢点蚀诱发机理[J]. 钢铁, 2015, 50(9): 81)
[15] Zhang C Y, Zhang Q, Li J G, et al.Micro-corrosion test research on pitting initiation site of the inclusions of carbon steel and low alloy steel in chlorine ion solution[J]. Metall. Anal., 2014, 34(1): 22(张春亚, 张奇, 李继高等. 碳钢及低合金钢在氯离子溶液中夹杂物诱发点蚀位置显微腐蚀实验探讨[J]. 冶金分析, 2014, 34(1): 22)
[16] Wang Y, Jiang S L, Zheng Y G, et al.Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions[J]. Corros. Sci., 2012, 63: 159
[17] Guo R Q, Zhang C, Yang Y, et al.Corrosion and wear resistance of a Fe-based amorphous coating in underground environment[J]. Intermetallics, 2012, 30: 94
[18] Hu L H.Pitting features of 1Cr18Ni9Ti stainless steel in the NaCl solution [D]. Nanchang: Nanchang Hangkong University, 2006(胡丽华. 1Cr18Ni9Ti不锈钢在NaCl介质中的点蚀特征研究 [D]. 南昌: 南昌航空工业学院, 2006)
[19] Zuo Y, Xiong J P.Engineering Materials and Corrosion Resistance[M]. Beijing: China Petrochemical Press, 2008: 12(左禹, 熊金平. 工程材料及其耐蚀性 [M]. 北京: 中国石化出版社, 2008: 12)
[20] Lekatou A, Marinou A, Patsalas P, et al.Aqueous corrosion behaviour of Fe-Ni-B metal glasses[J]. J. Alloy. Compd., 2009, 483: 514
[21] Liu D X.The Corrosion and Protection of Materials [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 108(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 108)
[22] Zhou Q C, Xu N X, Shi S T.Study on the passivation film of the nickel surface by ellipsometry[J]. J. Chin. Soc. Corros. Prot., 1990, 10: 287(周庆初, 徐乃欣, 石声泰. 椭圆偏振法研究镍表面的钝化膜[J]. 中国腐蚀与防护学报, 1990, 10: 287)
[1] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[2] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[3] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[4] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[5] 徐相英,葛芳芳,李朋,舒瑞,黄峰,李谋成. 非晶Ti-B基涂层的力学和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
[6] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[7] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[8] 胡新芳, 李辛庚, 樊志彬, 王晓明, 王学刚. 新型Zn-22Al-Mg-Re合金涂层性能研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 521-526.
[9] 王淑艳,夏永平 刘 莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240.
[10] 王应发,黄国胜,程旭东,李相波,邢路阔,郭娟,马焱. 热喷涂Zn-Ni复合涂层在海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.
[11] 肖正涛,李相波,王佳,黄国胜,周雄. 冷喷涂铬锆铜涂层在海水中的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(1): 18-22.
[12] 周贤良,朱敏,薛会斌,彭新元,叶志国. 热轧带钢的初期耐大气腐蚀性能[J]. 中国腐蚀与防护学报, 2011, 31(2): 139-144.
[13] 李肖丰;李全安;陈君;张清;张兴渊. Sn对Mg-6Al-1.2Y-0.9Nd镁合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 101-106.
[14] 唐子龙;刘哲. LY12铝合 金NaOH介质电解着色膜耐蚀性的电化学评价[J]. 中国腐蚀与防护学报, 2010, 30(1): 25-28.
[15] 李海祥;李相波;孙明先;王洪仁;黄国胜. 冷喷涂Zn-50Al复合涂层在海水中的耐蚀性能[J]. 中国腐蚀与防护学报, 2010, 30(1): 62-66.