Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (5): 402-410    DOI: 10.11902/1005.4537.2017.024
  研究报告 本期目录 | 过刊浏览 |
脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究
陈菊娜1,2,3,吴佳佳1,王鹏1,张盾1()
1 中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071
2 中国科学院大学 北京 100049
3 海军航空大学 烟台 264001
Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater
Juna CHEN1,2,3,Jiajia WU1,Peng WANG1,Dun ZHANG1()
1 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Naval Aeronautical University, Yantai 264001, China
全文: PDF(1495 KB)   HTML
摘要: 

利用失重法、表面分析方法与电化学方法研究了脱硫弧菌 (属于硫酸盐还原菌) 和溶藻弧菌单独及共存时对船体结构材料907钢在海水中腐蚀的影响。结果表明,腐蚀速率大小顺序为:混合菌<溶藻弧菌<无菌海水≈ 脱硫弧菌。O2的存在及营养物质的匮乏,抑制了脱硫弧菌的存活和繁殖,907钢腐蚀速率在脱硫弧菌中与无菌对照中的相似。相反地,溶藻弧菌在以上环境中可以很好地生存,并且抑制了907钢的腐蚀过程,这与细菌通过消耗O2进行的代谢增殖活动有关。在混合菌体系 (脱硫弧菌和溶藻弧菌) 中,907钢的腐蚀过程进一步被抑制,这是由于混合菌体系中形成的致密生物膜对腐蚀的深入发展造成阻碍,腐蚀抑制作用更加明显。

关键词 船体结构材料微生物腐蚀脱硫弧菌溶藻弧菌    
Abstract

The corrosion behavior of 907 steel, as hull structural material, in seawater with mono-, and di-cultures of Desulfovibrio sp. (belonging to sulphate-reducing bacteria) and Vibrio alginolyticus was studied by means of weight loss- and electrochemical-method, as well as surface analysis methods. The results demonstrated that the corrosion rate of the steel in seawaters can be ranked increasingly as the following: Desulfovibrio sp.+Vibrio alginolyticus<Vibrio alginolyticusDesulfovibrio sp. The metabolism of Desulfovibrio sp. was inhibited due to the lack of nutrient substances and the presence of oxygen, and the corrosion rate of 907 steel in the seawater with Desulfovibrio sp. was the same as that in sterile seawater. However, Vibrio alginolyticus metabilited well in the test condition, and the presence of Vibrio alginolyticus may inhibit the corrosion of 907 steel due to that the oxygen was removed by metalism of Vibrio alginolyticus. The corrosion of 907 steel was further inhibited in the presence of mixed Desulfovibrio sp. and Vibrio alginolyticus, which may facilitate the formation of compact biofilm on the surface of 907 steel.

Key wordshull structural material    microbiologically influenced corrosion    Desulfovibrio sp.    Vibrio alginolyticus
收稿日期: 2017-02-14     
基金资助:国家重点研发计划 (2016YFB0300604) 和国家重点基础研究发展计划 (2014CB643304)
作者简介: 陈菊娜,女,1981年生,博士生

引用本文:

陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
Juna CHEN, Jiajia WU, Peng WANG, Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 402-410.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.024      或      https://www.jcscp.org/CN/Y2017/V37/I5/402

图1  907钢试样在4种不同介质体系中浸泡8 d后的数码照片
图2  907钢试样在4种不同体系中浸泡8 d后的失重数据
图3  907钢试样在溶藻弧菌和混合菌体系中浸泡不同时间的平均失重数据
图4  907钢试样在不同体系中浸泡8 d后腐蚀产物的SEM像
图5  907钢试样在不同体系中浸泡8 d后除去腐蚀产物后的表面SEM像
图6  907钢在4种不同体系中自腐蚀电位随时间的变化曲线
图7  907钢浸泡在不同体系中的Nyquist和Bode图随时间的变化
图8  907钢在4种不同体系中浸泡不同时间的EIS比较
图9  907钢浸泡在不同体系中所对应的等效电路
Media Time / d Rs / Ωcm2 Qf / μFcm-2 nf Rf / Ωcm2 Qdl / μFcm-2 ndl Rct / Ωcm2
Abiotic blank 0.17 18.52 --- --- --- 61.9 0.8411 10200
1 19.53 --- --- --- 379.5 0.8136 5440
3 20.27 --- --- --- 359.7 0.8021 6707
5 21.41 --- --- --- 352.5 0.7907 7325
8 22.87 --- --- --- 355.9 0.7775 9159
Desulfovibrio sp. 0.17 17.9 --- --- --- 63.3 0.8559 9582
1 19.87 --- --- --- 518 0.8384 6309
3 20.52 --- --- --- 580 0.8257 10200
5 21.67 --- --- --- 619 0.8273 10800
8 22.3 --- --- --- 670 0.8255 7905
Vibrio alginolyticus 0.17 16.32 29.6 0.8973 19600 38.3 0.5539 32500
1 17.36 11.4 0.9724 271000 4.7 0.6117 678000
3 17.73 11.84 0.9722 438600 6.35 0.7169 567400
5 17.39 90.8 0.9422 12100 120.1 0.7684 8644
8 17.82 102.6 0.9436 12500 56.8 0.7872 34300
Desulfovibrio sp.+Vibrio alginolyticus 0.17 16.99 27 0.9008 13800 28.5 0.4806 37500
1 19.04 14.2 0.9552 39200 13.2 0.5111 320000
3 18.29 27.2 0.9519 32400 21.5 0.5915 123000
5 18.73 40.8 0.9552 26700 24.3 0.4525 140000
8 18.13 72.1 0.9485 19800 48.7 0.7682 54700
表1  907钢在不同体系中电化学参数随浸泡时间的变化
图10  907钢在不同体系中Rct随浸泡时间的变化
[1] Wade S A, Mart P L, Trueman A R.Microbiologically influenced corrosion in maritime vessels[J]. Corros. Mater., 2011, 36: 68
[2] Neihof R, May M.Microbial and particulate contamination in fuel tanks of naval ships[J]. Int. Biodeterior. Bull., 1983, 19: 59
[3] Haggett R D, Morchat R M.Microbiological contamination: biocide treatment in naval distillate fuel[J]. Int. Biodeter. Biodegr., 1992, 29: 87
[4] Chen D B, Hu Y L, Chen X Q.Progress of microbial influenced corrosion in warship[J]. J. Naval Univ. Eng., 2006, 18(1): 79
[4] (陈德斌, 胡裕龙, 陈学群. 舰船微生物腐蚀研究进展[J]. 海军工程大学学报, 2006, 18(1): 79)
[5] Wade S A, Mart P L, Trueman A R, et al.Investigation of the potential for MIC in the bilge waters of Australian naval vessels [A]. NACE International Corrosion 2009 Conference & Expo[C]. Atlanta, USA: NACE, 2009
[6] Javaherdashti R.Impact of sulphate-reducing bacteria on the performance of engineering materials[J]. Appl. Microbiol. Biot., 2011, 91: 1507
[7] Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nat. Rev. Microbiol., 2008, 6: 441
[8] Yuan S J, Liang B, Zhao Y, et al.Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria[J]. Corros. Sci., 2013, 74: 353
[9] King R A, Miller J D A, Smith J S. Corrosion of mild steel by iron sulphides[J]. Br. Corros. J., 1973, 8: 137
[10] Dinh H T, Kuever J, Mu?mann M, et al.Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
[11] Li H, Xu D, Li Y, et al.Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium desulfovibrio vulgaris[J]. PLoS One, 2015, 10: e0136183
[12] Xu D K, Li Y C, Song F M, et al.Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385
[13] Liu F L, Zhang J, Sun C X, et al.The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud[J]. Corros. Sci., 2014, 83: 375
[14] Bermont-Bouis D, Janvier M, Grimont P A D, et al. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel[J]. J. Appl. Microbiol., 2007, 102: 161
[15] Korenblum E, Valoni E, Penna M, et al.Bacterial diversity in water injection systems of Brazilian offshore oil platforms[J]. Appl. Microbiol. Biotechnol., 2010, 85: 791
[16] Dang H, Chen R, Wang L, et al.Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon-and Zetaproteobacteria in Pacific Ocean coastal seawaters[J]. Environ. Microbiol., 2011, 13: 3059
[17] Lanneluc I, Langumier M, Sabot R, et al.On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel[J]. Int. Biodeterior. Biodegrad., 2015, 99: 55
[18] Dolla A, Fournier M, Dermoun Z.Oxygen defense in sulfate-reducing bacteria[J]. J. Biotechnol., 2006, 126: 87
[19] Lobo S A L, Melo A M P, Carita J N, et al. The anaerobe desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels[J]. FEBS Lett., 2007, 581: 433
[20] Gaylarde C C, Videla H A.Localised corrosion induced by a marine Vibrio[J]. Int. Biodeter., 1987, 23: 91
[21] Rolfe M D, Rice C J, Lucchini S, et al.Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation[J]. J. Bacteriol., 2012, 194: 686
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[6] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[7] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[8] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[9] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[10] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[11] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[13] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[14] 李克娟, 郑碧娟, 陈碧, 刘宏芳. 磁场对Q235钢微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 463-469.
[15] 柴柯, 罗琦, 吴进怡. 海水及培养基中假单胞菌对45钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 481-490.