Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 191-196    DOI: 10.11902/1005.4537.2017.022
  研究报告 本期目录 | 过刊浏览 |
Zn-Al-Mg合金的凝固组织及其耐腐蚀性能
蒋光锐(), 刘广会
首钢集团有限公司技术研究院 绿色可循环钢铁流程北京市重点实验室 北京 100043
Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys
Guangrui JIANG(), Guanghui LIU
Beijing Key Laboratory of Green Recyclable Process for Iron & Steel Production Technology, Shougang Group Co., Ltd, Research Institute of Technology, Beijing 100043, China
全文: PDF(1950 KB)   HTML
摘要: 

在电阻炉中熔炼得到Zn-Al-Mg合金,然后分别在水冷、空冷和炉冷的条件下冷却到室温。采用SEM观察不同凝固方式下的Zn-Al-Mg合金微观组织,并采用电化学方法研究了凝固方式对样品耐腐蚀性能的影响。结果表明,Zn-Al-Mg合金的微观组织由富Zn的初晶组织以及Zn-Al-Mg共晶组织构成。采用炉冷方式得到的Zn-Al-Mg合金中的初晶组织尺寸最大,比例最高。随着合金凝固速度的提高,合金中的初晶组织显著细化,共晶组织所占比例增大,共晶组织从颗粒状转变为层片状。采用不同凝固方式得到的Zn-Al-Mg合金的自腐蚀电位相近,但是自腐蚀电流以及电化学阻抗谱有明显差异,炉冷方式的Zn-Al-Mg合金的自腐蚀电流最小,耐腐蚀性能最好。

关键词 Zn-Al-Mg合金凝固微观组织耐腐蚀性能镀层    
Abstract

Due to high protection performance for cut edges, much attention was focused on Zn-Al-Mg coating. Considering hot-dip galvanizing technology was widely applied for the Zn-Al-Mg coating, solidification should strongly influence its microstructure and corrosion properties. In this work, a Zn-Al-Mg alloy was melted in a resistance furnace and then cooled to room temperature with different solidification processes, including water quench, air cooling and furnace cooling. Scanning electron microscopy (SEM) was applied to analyzed the microstructure of the alloys solidified with different processes. Moreover, the effect of solidification on corrosion resistance was studied by electrochemical method. Results show that microstructure of the Zn-Al-Mg alloy consists of Zn-rich primary grains and eutectic of Zn, Al and Mg. It could be found that among others, the furnace cooled Zn-Al-Mg alloy presents the largest size and ratio of the primary grains. With the increasing solidification rate, the primary grains turn to be finer and more eutectic appears, besides, the eutectic transforms from granular-like to lamellar-like. Electrochemical test indicates that the corrosion potentials for all the alloys solidified with different ways are more or less the same level but their corrosion currents and plots of electrochemical impedance spectroscopy (EIS) are remarkable different. The corrosion current of the furnace cooled alloy is the smallest, which means the highest corrosion resistance.

Key wordsZn-Al-Mg alloy    solidification    microstructure    corrosion resistance    coating
收稿日期: 2017-02-12     
基金资助:国家重点研发计划 (2017YFB0304305)
作者简介:

作者简介 蒋光锐,男,1982年生,博士,高级工程师

引用本文:

蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
Guangrui JIANG, Guanghui LIU. Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 191-196.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.022      或      https://www.jcscp.org/CN/Y2018/V38/I2/191

图1  以不同冷却方式得到的Zn-Al-Mg合金的微观组织及共晶组织放大图
图2  不同凝固方式下Zn-Al-Mg合金中初晶晶粒尺寸及其体积比
Solidification Structure Position Mg Al Zn
Water cooling Eutectic 1 0.0 46.0 54.0
Eutectic 2 4.5 5.4 90.1
Eutectic 3 30.7 5.8 63.5
Primary 4 0.0 7.8 92.2
Air cooling Eutectic 1 0.0 50.4 49.6
Eutectic 2 0.0 4.2 95.8
Eutectic 3 32.3 2.0 65.7
Primary 4 0.0 4.1 95.9
Furnace cooling Eutectic 1 0.0 79.4 20.6
Eutectic 2 0.0 3.7 96.3
Eutectic 3 29.2 2.6 68.2
Primary 4 0.0 2.4 97.6
表1  Zn-Al-Mg合金中不同位置的元素含量
图3  不同凝固方式的Zn-Al-Mg合金的极化曲线
Solidification Ecorr / V vs SCE Icorr / μAcm-2
Water cooling -1.03 5.5
Air cooling -1.04 4.1
Furnace cooling -1.05 2.1
表2  不同凝固方式的Zn-Al-Mg合金的电化学参数
图4  Zn-Al-Mg合金的Nyquist图和Bode相位图
图5  Zn-Al-Mg合金EIS的拟合等效电路
Solidification Rs / Ωcm2 CPE / Y01 CPE / n1 R1 / Ωcm2 CPE / Y02 CPE / n2 R2 / Ωcm2
Water cooling 16.3 9.94×10-4 6.38×10-1 254 2.71×10-5 8.31×10-1 193
Air cooling 18.5 3.66×10-5 8.00×10-1 232 1.76×10-3 5.64×10-1 358
Furnace cooling 17.4 8.75×10-4 6.59×10-1 285 2.53×10-5 8.10×10-1 417
表3  等效电路的拟合参数
[1] Zhang Q F, Liu B J, Huang J Z.Modern Continuous Hot Dip Galvanizing of Steel Sheets [M]. Beijing: Metallurgical Industry Press, 2007: 1(张启富, 刘邦津, 黄建中. 现代钢带连续热镀锌 [M]. 北京: 冶金工业出版社, 2007: 1)
[2] Angeli G, Brisberger R, Bulter M, et al.Zinc-magnesium-aluminium for automotive industry [A]. Proceedings of 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet & 2nd Asia-Pacific Galvanizing Conference [C]. Beijing: Metallurgical Industry Press, 2013: 632
[3] Nishimura K, Kato K, Shindo H.Highly corrosion-resistant Zn-Mg alloy galvanized steel sheet for building construction materials[J]. Nippon Steel Tech. Rep., 2000, 81: 85
[4] Prosek T, Nazarov A, Goodwin F, et al.Improving corrosion stability of Zn-Al-Mg by alloying for protection of car bodies[J]. Surf. Coat. Technol., 2016, 306: 439
[5] Jiang G R, Wang H Q, Li M, et al.Corrosion properties of steel sheet with zinc-base alloyed coatings[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 354(蒋光锐, 王海全, 黎敏等. 锌基合金镀层钢板的耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37: 354)
[6] Seto K.Recent progress and outlook for Zinc-and Zinc alloy-coated steel sheets in Japan [A]. Proceedings of 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Osaka: The Iron and Steel Institute of Japan, 2007: 1
[7] Li F, Lv J S, Yang H G, et al.Research on ZnAlMg coated steel sheet[J]. Steel Roll., 2013, 30(2): 45(李锋, 吕家舜, 杨洪刚等. 锌铝镁镀层钢板的研究进展[J]. 轧钢, 2013, 30(2): 45)
[8] Komatsu A, Izutani H, Tsujimura T, et al.Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheetunder accelerated corrosion environment[J]. Tetsu-to-Hagane, 2000, 86: 534
[9] Thierry D, Pro?ek T.Corrosion protection and corrosion mechanisms of continuous galvanized steel sheet with focus on new coating alloys [A]. Proceedings of 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Milano: Associazione Italiana di Metallurgia, 2011: IL06
[10] Azevedo M S, Allély C, Ogle K, et al.Corrosion mechanisms of Zn(Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes[J]. Corros. Sci., 2015, 90: 482
[11] Sulliva J, Elvins J.In situ monitoring of the microstructural corrosion mechanisms of zinc-magnesium-aluminium galvanising alloys using time lapse microscopy [A]. Proceedings of 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Milano: Associazione Italiana di Metallurgia, 2011: 62
[12] Yao C Z, Lv H B, Zhu T P, et al.Effect of Mg content on microstructure and corrosion behavior of hot dipped Zn-Al-Mg coatings[J]. J. Alloy. Compd., 2016, 670: 239
[13] Tong C, Su X P, Wang J H, et al.Effect of Mg addition on solidification structure and corrosion resistance of Zn-6%Al alloy coating[J]. Hot Work. Technol., 2012, 41(12): 99(童晨, 苏旭平, 王建华等. Mg对Zn-6%Al镀层凝固组织的影响及耐腐蚀性的研究[J]. 热加工工艺, 2012, 41(12): 99)
[14] Lu J T, Jiang A H, Che C S.Effects of cooling rate on solidification structure of Zn-3.5Mg alloy[J]. Spec. Cast. Nonferrous Alloy., 2009, 29: 310(卢锦堂, 江爱华, 车淳山. 冷却速率对Zn-3.5Mg合金凝固组织的影响[J]. 特种铸造及有色合金, 2009, 29: 310)
[15] Elvins J, Spittle J A, Worsley D A.Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion[J]. Corros. Sci., 2005, 47: 2740
[16] Ma R N, Fan Y Z, Du A, et al.Effect of cooling rate on morphology and corrosion resistance of Zn-Al-Mg alloy[J]. Trans. Mater. Heat Treat., 2015, 36(4): 49(马瑞娜, 范永哲, 杜安等. 冷却速度对Zn-Al-Mg合金组织及腐蚀性能的影响[J]. 材料热处理学报, 2015, 36(4): 49)
[17] Stern M, Geary A L.Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. J. Electrochem. Soc., 1957, 104: 56
[18] Ehl R G, Ihde A J.Faraday's electrochemical laws and the determination of equivalent weights[J]. J. Chem. Educ., 1954, 31: 226
[19] Liang H, Chen S L, Chang Y A.A thermodynamic description of the Al-Mg-Zn system[J]. Metall. Mater. Trans., 1997, 28A: 1725
[20] Villars P, Prince A, Okamoto H.Handbook of Ternary Alloy Phase Diagrams[M]. Materials Park, OH: ASM International, 1995: 3933
[21] Persson D, Thierry D, LeBozec N, et al. In situ infrared reflection spectroscopy studies of the initial atmospheric corrosion of Zn-Al-Mg coated steel[J]. Corros. Sci., 2013, 72: 54
[22] Schuerz S, Fleischanderl M, Luckeneder G H, et al.Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment[J]. Corros. Sci., 2009, 51: 2355
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[4] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[5] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[6] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[7] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[8] 蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[9] 蒋光锐, 王海全, 黎敏, 刘广会, 谢春乾. 锌基合金镀层钢板的耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 354-359.
[10] 胡骞,刘静,王玉昆,黄峰,戴明杰,侯阳来. 不同组织A710钢在NaCl溶液中耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 611-616.
[11] 周琼宇,王小芬,钟庆东,王操,胡一峰. 镀液pH值对电沉积Ni-W合金镀层结构及其耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 457-462.
[12] 刘光明, 刘斌. 化学镀Ni-P镀层防腐蚀后处理工艺的研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 265-270.
[13] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[14] 李西娟, 李澄, 王加余, 张学德, 尹成勇, 郑顺丽, 徐云玲. 含疏水性液体微胶囊复合铜镀层的制备与性能研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 311-316.
[15] 陈斌锴 仲海峰 张启富. 锌液中Al含量对440 MPa级高强IF钢镀层的组织结构及抑制层的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 171-174.