Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 147-157    DOI: 10.11902/1005.4537.2017.020
  研究报告 本期目录 | 过刊浏览 |
模拟酸雨作用下红壤含水量对X80钢腐蚀行为的影响
王帅星1,2, 杜楠1(), 刘道新2, 肖金华1, 邓丹萍1
1 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
2 西北工业大学 腐蚀与防护研究所 西安 710072
Influence of Soil Water Content Adjusted by Simulated Acid Rain on Corrosion Behavior of X80 Steel in Red Soil
Shuaixing WANG1,2, Nan DU1(), Daoxin LIU2, Jinhua XIAO1, Danping DENG1
1 National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2 Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(5004 KB)   HTML
摘要: 

利用动电位极化、EIS、三维视频显微镜及XRD等研究了模拟硫酸型酸雨作用下红壤含水量对X80钢腐蚀电化学行为、腐蚀形貌及腐蚀产物组成的影响;同时,依据南昌的气候数据和红壤含水量变化规律,分析了X80钢在酸性红壤中的凝露腐蚀行为。结果表明,X80钢在酸雨红壤介质中的腐蚀速率 (Rct-1)、腐蚀类型及腐蚀机制均与红壤含水量密切相关。含水量为15% (质量分数) 体系中,X80钢发生局部腐蚀,整个腐蚀过程均受电化学反应控制,Rct-1较小。随着红壤介质含水量的提高,X80钢腐蚀速率增加,且逐渐转化为全面性腐蚀。含水量为25%条件下,电极表面存在疏松腐蚀产物层及土壤颗粒附着。酸雨饱和红壤中,X80钢经受严重的溃疡状腐蚀,腐蚀机制随时间改变;初期,X80钢腐蚀受电荷转移过程控制;15 d后,逐渐转变为活化与扩散联合控制。除酸度外,凝露也是造成红壤强腐蚀性的重要因素;X80钢在南昌红壤中埋设时,表面存在液膜的时间占总埋设时间的比例高达98.6%,腐蚀现象几乎会在管线服役的任何时间均可能发生。

关键词 X80钢腐蚀土壤含水量模拟酸雨凝露    
Abstract

The electrochemical behavior and corrosion feature of X80 steel in red soil with different moisture contents adjusted by simulated acid rain were studied by means of potentiodynamic polarization curves, EIS, three-dimensional video microscope, SEM and XRD. Results show that the corrosion rate (Rct-1), corrosion type and corrosion mechanism of X80 steel in red soil irrigating with simulated acid rain were significantly dependent on the soil water content (SWC). By 15% (mass fraction) SWC, the overall corrosion process was controlled by electrochemical activation reaction, the steel surface underwent pitting and filiform corrosion, and Rct-1 was small. With the increase of SWC, Rct-1 increased, and the corrosion type of the steel surface varied from the localized pitting to the uniform corrosion. When SWC was 25%, a loose and reddish-brown corrosion product layer was formed by the incorporation of soil particles. In the acid rain-saturated soil, the steel surface underwent severe ulcer-like corrosion, the corrosion mechanism varied upon the exposure time. The corrosion process was mainly controlled by a charge-transfer process at the initial stage, but the subsequent corrosion processes were controlled by a combination of activation control and diffusion control after 15 d. In addition to the soil acidity, the condensation phenomenon should be taken into account to understand the corrosive nature of red soil. When X80 steel was exposed in the soil at Nanchang area, the time with moisture film on the steel surface could account for 98.6% of the total exposure time, which means that the corrosion reaction of X80 steel in the acidic red soil could occur at almost any time.

Key wordsX80 steel    corrosion    soil water content (SWC)    simulated acid rain    condensation
收稿日期: 2017-02-06     
基金资助:国家自然科学基金 (51161021)
作者简介:

作者简介 王帅星,男,1985年生,博士

引用本文:

王帅星, 杜楠, 刘道新, 肖金华, 邓丹萍. 模拟酸雨作用下红壤含水量对X80钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(2): 147-157.
Shuaixing WANG, Nan DU, Daoxin LIU, Jinhua XIAO, Danping DENG. Influence of Soil Water Content Adjusted by Simulated Acid Rain on Corrosion Behavior of X80 Steel in Red Soil. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 147-157.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.020      或      https://www.jcscp.org/CN/Y2018/V38/I2/147

图1  X80管线钢显微组织的光学显微镜照片及SEM像
图2  凝露腐蚀验证装置图
图3  X80钢在不同含水量的酸雨红壤介质中腐蚀1d的极化曲线
图4  X80钢在不同含水量的酸雨红壤介质中腐蚀不同时间的EIS谱
图5  X80钢在南昌红壤中腐蚀的EIS等效电路
SWC / mass fraction Exposure time / d Rs / Ωcm2 Cs / Fcm-2 Rct / Ωcm2 Qdl / Fcm-2 ndl
15% 1 5775 7.906×10-8 6186 8.416×10-5 0.7001
4 5744 6.242×10-8 6013 9.627×10-5 0.6777
7 5248 1.814×10-9 6518 2.891×10-5 0.6947
15 3781 1.069×10-9 5558 8.127×10-5 0.6255
30 3151 6.799×10-8 4982 1.531×10-4 0.5819
25% 1 1479 1.094×10-8 3282 2.294×10-5 0.7890
4 1047 9.561×10-8 4278 1.712×10-5 0.8541
7 1030 7.044×10-8 4334 3.699×10-5 0.7652
15 575 2.927×10-8 3693 2.136×10-5 0.7576
30 518 2.877×10-8 2795 3.927×10-5 0.6887
30% 1 1420 2.003×10-9 3082 3.504×10-5 0.7751
4 1292 2.472×10-9 3431 1.363×10-5 0.7440
7 1073 2.396×10-9 3651 5.935×10-5 0.7188
15 847 3.597×10-8 5914 7.826×10-4 0.6063
30 817 1.795×10-8 6717 2.175×10-4 0.5686
37% 1 644 1.287×10-8 1564 3.937×10-5 0.8053
4 1169 1.406×10-9 2596 3.408×10-5 0.8306
7 933 1.166×10-9 5309 1.529×10-4 0.6151
15 625 3.351×10-9 8754 2.737×10-4 0.5104
30 701 2.609×10-9 7762 2.432×10-4 0.4458
表1  X80钢在不同含水量的酸雨红壤介质中暴露不同时间的EIS拟合参数
图6  X80钢在不同含水量的酸雨红壤介质中腐蚀过程中的Rct-1变化规律
图7  X80钢在不同含水量的酸雨红壤介质中腐蚀30 d后的表面3D形貌及SEM像
图8  X80钢在不同含水量的酸雨红壤介质中腐蚀30 d后腐蚀产物的XRD谱
图9  不同含水量的红壤介质中X80钢表面液相存在模型及腐蚀简图
图10  不同环境温度下红壤上方空气湿度达到99%RH所需时间与土壤含水量的关系
Month Precipitation / mm Precipitation days pH of rain Average temperature / ℃ Average DIF / ℃ SWC / %
Jan. 74 10.0 4.15 5.3 5.7 13%
Feb. 132 13.2 4.23 6.9 6.0 30%
Mar. 201 18.0 4.48 10.9 6.5 Saturation
Apr. 187 17.7 5.07 17.3 7.8 Saturation
May 223 16.5 4.08 22.3 15.9 Saturation
Jun. 306 15.5 4.26 26.9 14.6 Saturation
Jul. 144 10.8 4.21 31.3 7.6 25%
Aug. 128 10.3 4.52 30.1 7.2 22%
Sep. 68 7.7 4.37 24.6 12.4 12%
Oct. 59 8.8 4.04 19.4 7.4 8%
Nov. 86 7.9 3.95 13.3 7.5 15%
Dec. 42 7.8 3.74 7.8 7.3 6%
表2  2014年南昌地区气候数据及红壤取样数据
图11  X80钢在南昌红壤中埋设时表面形成液膜的时间谱
[1] Niu J, Qi L H, Liu Y L, et al.Tempering microstructure and mechanical properties of pipeline steel X80[J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 573
[2] Borovikov A V.Production of straight-seam large-diameter pipes made of steel of strength class X80[J]. Metallurgist, 2003, 47: 415
[3] Li X G, Du C W, Dong C F, et al.Corrosion Proterty and Experimental Research of X70 Pipline Steel [M]. Beijing: Science Press, 2006(李晓刚, 杜翠薇, 董超芳等. X70钢的腐蚀行为与试验研究 [M]. 北京: 科学出版社, 2006)
[4] Cole I S, Marney D.The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils[J]. Corros. Sci., 2012, 56: 5
[5] Murray J N, Moran P.J. Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy[J]. Corrosion, 1989, 45: 34
[6] El-Shamy A M, Shehata M F, Ismail A I M. Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines[J]. Appl. Clay Sci., 2015, 114: 461
[7] Noor E A, Al-Moubaraki A H. Influence of soil moisture content on the corrosion behavior of X60 steel in different soils[J]. Arab. J. Sci. Eng., 2014, 39: 5421
[8] Yao H P, Yan M C, Yang X, et al.Electrochemical behavior of X80 pipeline steel in the initial stage of corrosion in an acidic red soil[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 472(么惠平, 闫茂成, 杨旭等. X80管线钢红壤腐蚀初期电化学行为[J]. 中国腐蚀与防护学报, 2014, 34: 472)
[9] Yan M C, Sun C, Xu J, et al.Anoxic corrosion behavior of pipeline steel in acidic soils[J]. Ind. Eng. Chem. Res., 2014, 53: 17615
[10] Chen X, Du C W, Li X G.Influences of soil water content on corrosion behavior of X70 steel in Yingtan acidic soil[J]. J. Petrochem. Univ., 2007, 20(4): 55(陈旭, 杜翠薇, 李晓刚. 含水率对X70钢在鹰潭酸性土壤中腐蚀行为的影响[J]. 石油化工高等学校学报, 2007, 20(4): 55)
[11] Xu R K, Zhao A Z, Li Q M, et al.Acidity regime of the red soils in a subtropical region of southern China under field conditions[J]. Geoderma, 2003, 115: 75
[12] Yan M C, Sun C, Xu J, et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
[13] Cao C N.Material Corrosion in Natural Environment of China[M]. Beijing: Chemical Industry Press, 2005(曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005)
[14] He J L, Long G, Huang Y, et al.Spatial and Temporal Distribution Law of Acid rain in Jiangxi Province [M]. Beijing: China Environmental Science Press, 1998(何纪力, 龙刚, 黄云等. 江西省酸雨时空分布规律研究 [M]. 北京: 中国环境科学出版社, 1998)
[15] Wu Y H, Liu T M, Sun C, et al.Effects of simulated acid rain on corrosion behaviour of Q235 steel in acidic soil[J]. Corros. Eng. Sci. Technol., 2010, 45: 136
[16] Li Y Q, Sun C, Yu C K, et al.Influence of simulated sulfate type acid rain on corrosion behavior of X70 steel in acidic soil[J]. Corros. Sci. Prot. Technol., 2008, 20: 105(李永强, 孙成, 于长坤等. 模拟硫酸型酸雨对X70钢在酸性土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2008, 20: 105)
[17] Yang S, Tang N, Yan M C, et al.Effect of temperature on corrosion behavior of X80 pipeline steel in acidic soil[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 227(杨霜, 唐囡, 闫茂成等. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35: 227)
[18] Yan M C, Sun C, Dong J H, et al.Electrochemical investigation on steel corrosion in iron-rich clay[J]. Corros. Sci., 2015, 97: 62
[19] Yan M C, Sun C, Xu J, et al.Electrochemical behavior of API X80 steel in acidic soils from Southeast China[J]. Int. J. Electrochem. Sci., 2015, 10: 1762
[20] Li C, Du C W, Liu Z Y, et al.Characteristics of electrochemical impedance spectroscopy for X100 pipeline steel in water-saturated acidic soil[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 377(李超, 杜翠薇, 刘智勇等. X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2011, 31: 377)
[21] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[22] Eliyan F F, Mahdi E S, Alfantazi A.Electrochemical evaluation of the corrosion behaviour of API-X100 pipeline steel in aerated bicarbonate solutions[J]. Corros. Sci., 2012, 58: 181
[23] Wang S X, Liu D X, Du N, et al.Relationship between dissolved oxygen and corrosion characterization of X80 steel in acidic soil simulated solution[J]. Int. J. Electrochem. Sci., 2015, 10: 4393
[24] Glazov N N, Ukhlovtsev S M, Reformatskaya I I, et al.Corrosion of carbon steel in soils of varying moisture content[J]. Prot. Met., 2006, 42: 601
[25] Nguyen Dang D, Lanarde L, Jeannin M, et al.Influence of soil moisture on the residual corrosion rates of buried carbon steel structures under cathodic protection[J]. Electrochim. Acta, 2015, 176: 1410
[26] Meng G Z, Zhang C, Cheng Y F.Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X70 steel in near-neutral pH solution[J]. Corros. Sci., 2008, 50: 3116
[27] Du C W, Zhao T L, Liu Z Y, et al.Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution[J]. Int. J. Miner. Metall. Mater., 2016, 23: 176
[28] Thee C, Hao L, Dong J H, et al.Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition[J]. Corros. Sci., 2014, 78: 130
[29] Dan Z H, Takigawa S, Muto I, et al.Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys[J]. Corros. Sci., 2011, 53: 2006
[30] Dan Z H, Muto I, Hara N.Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions[J]. Corros. Sci., 2012, 57: 22
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.