Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 210-218    DOI: 10.11902/1005.4537.2017.017
  研究报告 本期目录 | 过刊浏览 |
T2铜及QCr0.5铜合金无铬复配钼酸盐钝化研究
宋久龙, 陈文革(), 雷楠楠
西安理工大学材料科学与工程学院 西安 710048
Passivation of T2 Cu and QCr0.5 Cu-alloy with Chromate-free Solutions of Molybdate Compound
Jiulong SONG, Wenge CHEN(), Nannan LEI
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
全文: PDF(8451 KB)   HTML
摘要: 

采用单一钼酸盐与各种复配钼酸盐钝化液对T2铜与QCr0.5铜合金表面进行钝化处理,分别运用电化学法、硝酸点滴实验、中性盐雾实验、SEM,XRD等手段对不同钝化膜的微观结构与耐蚀性能进行研究,并与铬酸盐钝化结果进行对比。结果表明,双氧水与聚天冬氨酸 (PASP) 作为添加剂,可以提高钼酸盐的钝化效果,尤其是两者同时加入时显著促进了钝化膜的形成,使两种钢材的溶解及表面形貌的腐蚀程度降低到最低限度,形成以Cu的氧化物为主的钝化膜,显著提高试样的耐蚀性。相比未钝化试样,钝化试样表面光泽较好。钝化试样经过盐雾实验后,表面腐蚀坑较少,存在一定的金属光泽;特别是T2铜的钝化效果最好,其PASP+H2O2复配钝化后的自腐蚀电流密度仅为3.10×10-6 A/cm2,近似于铬酸盐钝化的9.06×10-7 A/cm2,达到了与铬酸盐钝化类似的效果。

关键词 T2铜QCr0.5铜合金钝化钼酸盐聚天冬氨酸    
Abstract

T2 Cu and QCr0.5 Cu-alloy were passivated in chromate-free solutions with single molybdate and complex molybdate respectively. The formed passivation films were then characterized by electrochemical method, nitric acid drop test, neutral salt spray test, SEM and XRD etc., taking the passivation film prepared with conventional chromate containing solution as comparison. Results show that the addition of polyaspartic acid (PASP) and H2O2 could improve the passivation effect of molybdate, especially the addition of the both simultaneously, which promoted the formation of passive film, the decrease of dissolution of Cu-alloy, and thereby the formation of a passivation film of copper oxide-based, significantly improved the corrosion resistance of T2 Cu and QCr0.5 Cu-alloy. After salt spray test, the surface of passivation treated samples presents metallic lustrousness to certain extent, while with less corrosion pits. In particular, the free-corrosion current density for T2 Cu passivated in molybdate solution with PASP+H2O2 is only 3.10×10-6 A/cm2, which is close to that for the chromate passivation film i.e. 9.06×10-7 A/cm2.

Key wordsT2 Cu    QCr0.5 Cu-alloy    passivation    molybdate    polyaspartic acid
收稿日期: 2017-02-04     
基金资助:西安市科技项目 (2017080CG/RC043)
作者简介:

作者简介 宋久龙,男,1993年生,硕士生

引用本文:

宋久龙, 陈文革, 雷楠楠. T2铜及QCr0.5铜合金无铬复配钼酸盐钝化研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 210-218.
Jiulong SONG, Wenge CHEN, Nannan LEI. Passivation of T2 Cu and QCr0.5 Cu-alloy with Chromate-free Solutions of Molybdate Compound. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 210-218.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.017      或      https://www.jcscp.org/CN/Y2018/V38/I2/210

Material Cu Zn Pb Ni Fe Sb Cr
T2 Cu 99.9 0.005 0.005 0.005 0.005 0.002 ---
QCr0.5 Bal. --- --- 0.050 0.100 --- 0.4~1.1
表1  T2铜和QCr0.5铜合金的化学成分
Number Component Process condition
a Unchromation ---
b 25 g/L Na2MoO4 20 ℃, 3 min
c 25 g/L Na2MoO4+40 mL/L 30%H2O2 20 ℃, 3 min
d 25 g/L Na2MoO4+50 mg/L PASP 20 ℃, 3 min
e 25 g/L Na2MoO4+40 mL/L 30%H2O2+50 mg/L PASP 20 ℃, 3 min
f 80 g/L CrO3+30 g/L H2SO4+1 g/L NaCl 20 ℃, 3 min
表2  T2铜和QCr0.5铜合金钝化液的组成及钝化工艺条件表
Number Components of passivation solution Initial bubbling time / s
T2 QCr0.5
a Unchromation 6 5
b Na2MoO4 9 9
c Na2MoO4+H2O2 11 14
d Na2MoO4+PASP 13 12
e Na2MoO4+H2O2+PASP 21 19
f CrO3+H2SO4+NaCl 20 24
表3  T2铜与QCr0.5铜合金经过不同钝化液钝化后硝酸点滴实验结果
图1  不同钝化处理后的T2铜和QCr0.5铜合金试样经过不同时间盐雾实验后的宏观形貌照片
图2  T2铜和QCr0.5铜合金试样经过不同钝化液钝化后在盐雾实验中的腐蚀增重曲线
图3  T2铜和QCr0.5铜合金钝化处理前后的XRD谱
图4  T2铜和QCr0.5铜合金试样经过不同钝化液处理并在大气中放置7 d后的表面SEM像
图5  不同钝化液钝化后T2铜和QCr0.5铜合金试样经盐雾实验并在大气中放置7 d后的SEM像
图6  T2铜和QCr0.5铜合金试样经不同钝化液钝化处理后在3.5%NaCl溶液中浸泡1.5 h时的极化曲线
Passivation solution Icorr / Acm-2 Ecorr / V η / %
T2 QCr0.5 T2 QCr0.5 T2 QCr0.5
Unchromation 3.18×10-5 2.16×10-5 -0.366 -0.271 --- ---
Na2MoO4 7.83×10-6 4.61×10-6 -0.236 -0.240 75.3 78.7
Na2MoO4+H2O2 6.70×10-6 3.51×10-6 -0.235 -0.242 78.0 83.8
Na2MoO4+PASP 6.66×10-6 3.63×10-6 -0.256 -0.255 79.0 83.2
PASP+H2O2+Na2MoO4 3.10×10-6 3.23×10-6 -0.204 -0.199 90.3 85.1
CrO3+H2SO4+NaCl 9.06×10-7 1.44×10-6 -0.212 -0.207 97.1 93.3
表4  T2铜和QCr0.5铜合金经不同钝化液钝化处理后的电化学极化曲线拟合结果
[1] Ge L Z.Application of copper and its alloy in national economy[J]. Sci. Technol. Innov., 2016, (4): 28(葛丽珍. 铜及铜合金加工材料在国民经济中的应用[J]. 科技与创新, 2016, (4): 28)
[2] Sui W J, Zhao W J, Zhang X, et al.Influence of TEOS content on anti-corrosion property of mercapto functional organic silane based sol-gel coatings on copper alloy surface[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 52(睢文杰, 赵文杰, 张星等. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36: 52)
[3] Chen J, Zheng Q F, Wen J G.Gray correlation analyses of influence factors on atmospheric corrosion of copper and copper alloys[J]. Corros. Prot., 2010, 31: 917(陈杰, 郑弃非, 温军国. 铜及铜合金大气腐蚀影响因素的灰色关联分析[J]. 腐蚀与防护, 2010, 31: 917)
[4] Zhao S M, Hao J J, Bi X.Study on the chromium-free passivation solution for copper and copper alloys[J]. Plat. Finish., 2016, 38(9): 13(赵思萌, 郝建军, 毕祥. 铜及其合金无铬钝化液的研究[J]. 电镀与精饰, 2016, 38(9): 13)
[5] Chu J S.Advances in research on chromate- free passivation for zinc coating[J]. Technol. Innov. Appl., 2016, (6): 51(储俊生. 对镀锌层无铬钝化技术的研究进展探讨[J]. 科技创新与应用, 2016, (6): 51)
[6] Zhang M L, Zhao J M.Research progress of synergistic inhibition effect and mechanism[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1(张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展[J]. 中国腐蚀与防护学报, 2016, 36: 1)
[7] Zhang Z G, Guo D, Zhou H F, et al.Research progress of molybdate-based inhibitors used for nonferrous metals[J]. Mater. Prot., 2015, 48(4): 40(张志刚, 郭帝, 周华锋等. 钼酸盐应用于有色金属缓蚀的研究进展[J]. 材料保护, 2015, 48(4): 40)
[8] Xiao J, Zhang J D.Study on corrosion inhibition performance of molybdate corrosion inhibitor for copper[J]. Silicon Valley, 2011,(23): 105(肖靖, 张剑德. 钼酸盐复配缓蚀剂对铜的缓蚀性能研究[J]. 硅谷, 2011, (23): 105)
[9] Wang X, Zhang C L.Corrosion inhibition of sodium molybdate and triethanolamine for copper[J]. Corros. Sci. Prot. Technol., 2004, 16: 44(王昕, 张春丽. 钼酸钠和三乙醇胺对铜的缓蚀作用[J]. 腐蚀科学与防护技术, 2004, 16: 44)
[10] Zhang S C, Shi W Y, Bai Z M.Chromium-free passivation treatment for copper alloy[J]. Corros. Prot., 2005, 26: 96(张世超, 石伟玉, 白致铭. 铜合金无铬钝化的研究[J]. 腐蚀与防护, 2005, 26: 96)
[11] Hu Y X, Chen Z L, Liu X, et al.Study on surface treatment of metal copper[J]. J. Beijing Inst. Petro-Chem., 2000, 8(2): 13(胡应喜, 陈志玲, 刘霞等. 金属铜表面处理研究[J]. 北京石油化工学院学报, 2000, 8(2): 13)
[12] Fu R, Wang S, Zhou R T.Progress on research of passivated galvanized[J]. Jiangxi Chem. Ind., 2014, (4): 34(付锐, 汪晟, 周仁韬. 镀锌钝化研究进展概述[J]. 江西化工, 2014, (4): 34)
[13] Ding Y T, Lu Z H, Hu Y, et al.Oxidation behavior of pure copper and its influencing factors[J]. J. Lanzhou Univ. Technol., 2010, 36(2): 1(丁雨田, 卢振华, 胡勇等. 纯铜的氧化行为及影响因素[J]. 兰州理工大学学报, 2010, 36(2): 1)
[14] Yu F, Liu G M, Yang L.Study of molybdate-tannic acid passivation on galvanised steel[J]. J. Nanchang Hangkong Univ.(Nat. Sci.), 2012, 26(2): 45(于斐, 刘光明, 杨柳. 热镀锌钢板钼酸盐-单宁酸钝化研究[J]. 南昌航空大学学报 (自然科学版), 2012, 26(2): 45)
[15] Yue H W, Wang S L, Liu Y L, et al.Effect of H2O2 on the CMP of the copper pattern wafer in the alkaline slurry[J]. Micronano. Technol., 2012, 49: 553(岳红维, 王胜利, 刘玉岭等. 碱性抛光液中H2O2对铜布线CMP的影响[J]. 微纳电子技术, 2012, 49: 553)
[16] Yang J, Jiang K, Zhang D Q.No-chromium passive treatment for brass surface[J]. Corros. Prot., 2001, 22: 193(杨健, 蒋凯, 张大全. 黄铜表面的非铬钝化处理研究[J]. 腐蚀与防护, 2001, 22: 193)
[17] Xu Q J, Shan Z H, Zhu L J, et al, Photoelectrochemical study on the complex of poly-aspartate and tungstate as inhibitors against brass corrosion[J]. Acta Chim. Sin., 2009, 67: 618(徐群杰, 单贞华, 朱律均等. 聚天冬氨酸与钨酸钠复配对黄铜缓蚀作用的光电化学研究[J]. 化学学报, 2009, 67: 618)
[18] Zha F L, Feng B, He T X.Corrosion behavior of copper grounding materials buried in soil at different depths[J]. Mater. Prot., 2015, 48(3): 48(查方林, 冯兵, 何铁祥. 不同埋地深度下铜质接地网材料的腐蚀特性[J]. 材料保护, 2015, 48(3): 48)
[19] Pan Y, Zhang S P, Zhou J L, et al.Research progress of pitting corrosion initiation of metal materials[J]. Equip. Environ. Eng., 2010, 7(4): 67(潘莹, 张三平, 周建龙等. 金属材料点蚀形核过程研究进展[J]. 装备环境工程, 2010, 7(4): 67)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[4] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[5] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[6] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[7] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[8] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[9] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[10] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[11] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[12] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[13] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[14] 杜开发,王彬,甘复兴,汪的华. 铜锡合金阳极在熔融碳酸盐中氧化膜的形成及其防护性能[J]. 中国腐蚀与防护学报, 2017, 37(5): 421-427.
[15] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.