Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (1): 68-73    DOI: 10.11902/1005.4537.2017.003
  本期目录 | 过刊浏览 |
钢材腐蚀损伤过程的元胞自动机模拟
陈梦成(), 温清清
华东交通大学土木建筑学院 南昌 330013
Cellular Automata Simulation of Corrosion Process for Steel
Mengcheng CHEN(), Qingqing WEN
School of Civil Engineering and Architecture, East China Jiao-tong University, Nanchang 330013, China
全文: PDF(2544 KB)   HTML
摘要: 

采用元胞自动机方法对腐蚀环境下钢材的腐蚀行为进行了模拟,依据钢材在腐蚀环境下的实验研究结果和元胞自动机原理,定义了元胞自动机模型的局部演化规则,分别对钢材在腐蚀环境下蚀坑表面和深度腐蚀形貌发展过程进行了模拟。通过对比元胞自动机模型在不同溶液初始浓度c和溶解概率p条件下的模拟结果,确定了能够真实反映蚀坑形貌的模拟条件,并且讨论了不同的cp对模拟形貌的影响。结果表明,随着pc的增长,蚀坑等效半径和深度随腐蚀时间t呈现近似幂函数增长。同时,将蚀坑深度模拟结果与依据Komp提出的理论公式计算结果进行对比,符合程度非常高,验证了CA模型的可行性和正确性。

关键词 钢材腐蚀蚀坑形貌元胞自动机模拟    
Abstract

Cellular automata method was adopted to simulate the corrosion damage behavior of steel. According to the results of experimental study on steel in corrosive environments and the principle of cellular automata method, a local evolution rule of cellular automata was defined, and then the evolution process of corrosion morphology for a pit were simulated. By comparing the simulation results for different initial concentrations c and dissolution probability p, the real simulation condition for the corrosion pit was determined. At the same time, the influence of different initial solution concentration c and dissolution probability p on the morphology was discussed. It was shown that with the increasing initial concentration c and dissolution probability p, the equivalent radius or depth of corrosion pit presents an approximate power function of etching time t. Meanwhile, the simulation results of pit depth were compared with the theoretical prediction proposed by Komp, which showed that both results are agreeable and the proposed CA model is feasible and efficient.

Key wordssteel    corrosion    pit morphology    cellular automata    simulation
收稿日期: 2017-01-06     
ZTFLH:  TU503  
基金资助:国家自然科学基金 (51378206和51468017)
作者简介: 作者简介 陈梦成,男,1962年生,教授,博士

引用本文:

陈梦成, 温清清. 钢材腐蚀损伤过程的元胞自动机模拟[J]. 中国腐蚀与防护学报, 2018, 38(1): 68-73.
Mengcheng CHEN, Qingqing WEN. Cellular Automata Simulation of Corrosion Process for Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 68-73.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.003      或      https://www.jcscp.org/CN/Y2018/V38/I1/68

图1  单蚀坑横向和纵向初始CA模型
图2  中心元胞r与邻居元胞δi (i=1,2,3,4)的演化关系
图3  Q235钢腐蚀后的表面蚀坑形貌
图4  蚀坑表面形貌演化
图5  蚀坑深度方向形貌演化
图6  c=0.5时溶解概率对等效半径的影响
图7  p=0.7时溶液初始浓度对等效半径的影响
图8  c=0.5时溶解概率对等效深度的影响
图9  p=0.7时溶液初始浓度对等效深度的影响
图10  不同溶液浓度下的拟合曲线
图11  不同溶解概率下的拟合曲线
c p A B R-square
0.3 0.7 0.0941 1.0200 0.9984
0.4 0.7 0.0950 1.0370 0.9992
0.5 0.7 0.1490 1.0080 0.9996
0.6 0.7 0.1010 1.0820 0.9993
0.7 0.7 0.2524 0.9683 0.9993
0.5 0.3 0.0536 1.0120 0.9976
0.5 0.4 0.1516 0.9167 0.9975
0.5 0.5 0.0789 1.0480 0.9980
0.5 0.6 0.0823 1.0630 0.9996
0.5 0.7 0.1490 1.00800 0.9996
表1  曲线拟合参数值
[1] Liu D X.Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 20(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 20)
[2] Jiang Q.The random token method of corroded steel structure surface rust pit studies [D]. Xi'an: Xi'an University of Architecture and Technology, 2011(蒋庆. 锈蚀钢结构表面锈坑的随机表征方法研究 [D]. 西安: 西安建筑科技大学, 2011)
[3] Wang Z Y, Yu Q C, Chen J J, et al.Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 53(王振尧, 于全成, 陈军君等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34: 53)
[4] Han X B, Gao Z M, Dang L H, et al.Wavelet packet analysis of early corrosion image of Q235 steel in simulated atmospheric environment[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 211(韩夏冰, 高志明, 党丽华等. Q235钢在模拟大气环境中早期腐蚀图像小波包分析[J]. 中国腐蚀与防护学报, 2013, 33: 211)
[5] Rusyn B P, Tors'ka R V, Pokhmurs'Kyi A Y. Modeling of the evolution of corrosion pitting with the use of cellular automata[J]. Mater. Sci., 2015, 50: 706
[6] Rusyn B, Tors'ka R, Kobasyar M.Application of the cellular automata for obtaining pitting images during simulation process of theirgrowth [A].Gruca D, Czachórski T, Kozielski S. Advances in Intelligent Systems and Computingrowth [A]. Gruca D, Czachórski T, Kozielski S. Advances in Intelligent Systems and Computing[M]. Cham: Springer, 2014, 242
[7] Torska R, Rusyn B.Application the cellular automata method for modeling the growth of surfaces corrosion defects [A]. Proceeding 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science[C]. Lviv, Ukraine: IEEE, 2016: 145
[8] Malki B, Baroux B.Computer simulation of the corrosion pit growth[J]. Corros. Sci., 2005, 47: 171
[9] Wang H, Lv G Z, Wang L, et al.Cellular automaton simulations of surface corrosion damage evolution[J]. Acta Aeronaut. Astronaut. Sin., 2008, 29: 1490(王慧, 吕国志, 王乐等. 金属表面腐蚀损伤演化过程的元胞自动机模拟[J]. 航空学报, 2008, 29: 1490)
[10] Wang H, Lv G Z, Zhang Y H.Cellular automaton simulations of corrosion pit growth[J]. Corros. Sci. Prot. Technol., 2008, 20: 472(王慧, 吕国志, 张有宏. 蚀坑生长演化过程的元胞自动机模拟[J]. 腐蚀科学与防护技术, 2008, 20: 472)
[11] Li L, Li X G, Xiao K, et al.Cellular automata simulation on the early stages of metal corrosion in moist atmospheric environment[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 114(李磊, 李晓刚, 肖葵等. 金属在湿大气环境下初期腐蚀行为的元胞自动机模拟[J]. 中国腐蚀与防护学报, 2010, 30: 114)
[12] Zhu Q.The corrosion of acid rain behind the recycled concrete filled steel tube column eccentric compression test and theory research [D]. Nanchang: East China Jiao-tong University, 2016(朱琪. 酸雨腐蚀后方钢管再生混凝土柱偏心受压试验与理论研究 [D]. 南昌: 华东交通大学, 2016)
[13] Pidaparti R M, Palakal M J, Fang L.Cellular automation approach to model aircraft corrosion pit damage growth[J]. AIAA J., 2004, 42: 2562
[14] Chopard B.Cellular Automata Modeling of Physical Systems[M]. New York: Springer, 1998: 865
[15] Toffoli T, Margolus N.Cellular Automata Machines: A New Environment for Modeling [M]. Cambridge: MIT Press, 1987
[16] Wang Y L, Cao M M, Sun H J.Time-dependent reliability analysis of circular CFST stub columns under environmental corrosion[J]. Pac. Sci. Rev., 2014, 16: 201
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[7] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[8] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[9] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[10] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[11] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.