Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (1): 39-46    DOI: 10.11902/1005.4537.2016.248
  研究报告 本期目录 | 过刊浏览 |
热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能
王越1, 刘子利1(), 刘希琴1, 章守东1, 田青超2
1 南京航空航天大学材料科学与技术学院 南京 211106
2 上海大学材料科学与工程学院 上海 200444
Microstructure and Corrosion Resistance of Hot Rolled Cr/Ni Micro-alloying High Strength Weathering Steel
Yue WANG1, Zili LIU1(), Xiqin LIU1, Shoudong ZHANG1, Qinchao TIAN2
1 Institute of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 Institute of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
全文: PDF(5517 KB)   HTML
摘要: 

采用电化学测试、浸泡实验及SEM、XRD等方法研究了热轧态Cr、Ni微合金化高强度耐候钢组织及耐蚀性能。结果表明:热轧态高强度耐候钢试样组织均由珠光体和铁素体组成,Cr在两相中均匀分布,Ni在铁素体相中含量更多。Cr、Ni含量较高的Q700H耐候钢在3.5%(质量分数)NaCl溶液中具有较低的年腐蚀速率。浸泡60 d后,两种钢自腐蚀电流密度增加,但Q700H钢具有较高的电荷转移电阻和较小的自腐蚀电流密度。浸泡150 d后,Q700H钢表面的点蚀坑较Q500H钢表面的更细小。Cr、Ni含量的增加促进了锈层中致密α-FeOOH的生成;Cr、Ni在锈层中发生富集,Cr集中在内锈层,Ni富集于基体和锈层界面处,且随Cr、Ni含量增加,富集越明显。

关键词 热轧态高强度耐候钢Cr、Ni微合金化腐蚀性能    
Abstract

The microstructure and corrosion resistance of hot rolled Cr/Ni micro-alloyed high strength weathering steels Q500H and Q700H were studied by means of electrochemical test, immersion test, SEM, EDS and XRD. Results showed that the two hot rolled high strength weathering steels present the same microstructure composed of pearlite and ferrite, while Cr was distributed evenly in the above mentioned two phases, and Ni was more rich in ferrite phase. The Q700H weathering steel with higher Cr- and Ni-content showed lower annual corrosion rate. After immersion in 3.5%(mass fraction) NaCl solution for 60 d, the corrosion current density of the two steels increased, but Q700H weathering steel has higher charge transfer resistance and smaller corrosion current density. The corrosion pits on the surface of Q700H steel was smaller after 150 d immersion. The increase of Cr- and Ni-content promoted the for mation of α-FeOOH, which was dense and stable. Cr was concentrated in the inner rust layer, Ni was enriched at the interface between the substrate and the rust layer, the higher the content of Cr and Ni was, the much obvious enrichment they had.

Key wordshot rolled low alloy high strength weathering steel    Cr and Ni micro-alloying    corrosion resistance
收稿日期: 2016-12-27     
ZTFLH:  TG174.2  
基金资助:江苏省产学研联合创新资金前瞻性研究项目 (BY2014003-06),苏州市产业技术创新专项 (SGC201539),常熟市科技计划项目(CG201404) 和江苏高校优势学科建设工程
作者简介:

作者简介 王越,女,1993年生,硕士生

引用本文:

王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
Yue WANG, Zili LIU, Xiqin LIU, Shoudong ZHANG, Qinchao TIAN. Microstructure and Corrosion Resistance of Hot Rolled Cr/Ni Micro-alloying High Strength Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 39-46.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.248      或      https://www.jcscp.org/CN/Y2018/V38/I1/39

Steel C Si Mn S P Cu Cr Ni V+Al+N+Ti Fe
Q500H 0.128 0.34 0.97 0.004 0.006 0.33 0.52 0.15 0.1 Bal.
Q700H 0.197 0.34 0.97 0.004 0.006 0.33 0.78 0.61 0.1 Bal.
表1  Q500H和Q700H钢的化学成分
图1  浸泡实验试样悬挂示意图
图2  热轧态Q500H和Q700H钢的SEM像,Q700H钢两相界面处线扫描分析结果
Steel Surface area S / cm2 Before corrosionW0 / g AftercleaningW1 / g Mass lossΔW / g Annual corrosion rate / mma-1
Q500H 4.3460 3.3612 3.2024 0.1588 0.1117
Q700H 4.7801 3.6032 3.4362 0.1670 0.1068
表2  Q500H和Q700H钢在3.5%NaCl溶液中浸泡150 d的腐蚀速率
图3  试样在裸钢状态及浸泡60 d表面覆盖锈层后的极化曲线
Steel Ecorr / V Icorr×10-5 / Acm-2
Q500H(naked) -0.6063 0.4431
Q700H(naked) -0.5412 0.4468
Q500H(naked)* -0.8165 1.7910
Q700H(naked)* -0.7678 0.8321
表3  试样的极化曲线拟合结果
Steel Time / d Rs / Ωcm2 CPE, Yo / (Ω-1cm-2sn) n Rct / Ωcm2
Q500H 0 8.141 7.200×10-4 0.7728 1387
10 9.213 1.895×10-3 0.8001 1394
60 10.370 9.160×10-4 0.8012 1501
Q700H 0 8.472 2.910×10-4 0.7393 1053
10 8.665 2.733×10-3 0.7733 1344
60 7.872 2.560×10-3 0.7836 1578
表4  Q500H和Q700H钢浸泡不同时间的EIS拟合结果
图4  Q500H和Q700H钢浸泡不同时间后的Nyquist图及等效电路图
图5  Q500H and Q700H钢在3.5%NaCl溶液中浸泡150 d后锈层去除前后的宏观形貌
图6  Q500H和Q700H钢浸泡150 d后表面腐蚀产物的XRD谱
图7  不同浸泡时间的锈层表面形貌及锈层截面EDS分析
[1] Kuziak R, Kawalla R, Waengler S.Advanced high strength steels for automotive industry[J]. Arch. Civ. Mech. Eng., 2008, 8: 103
[2] Shanmugam S, Ramisetti N K, Misra R D K, et al. Microstructure and high strength-toughness combination of a new 700 MPa Nb-microalloyed pipeline steel[J]. Mater. Sci. Eng., 2008, A478: 26
[3] Morcillo M, Chico B, Díaz I, et al.Atmospheric corrosion data of weathering steels. A review[J]. Corros. Sci., 2013, 77: 6
[4] Zhang R Y, Shi D Y, Jiang F, et al.Experimental on corrosion of 3Cr steel in CO2 environment[J]. Corros. Prot., 2012, 33: 147(张仁勇, 施岱艳, 姜放等. 3Cr钢在CO2环境中的腐蚀试验研究[J]. 腐蚀与防护, 2012, 33: 147)
[5] Choi Y S, Shim J J, Kim J G.Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water[J]. J. Alloy. Compd., 2005, 391: 162
[6] Zhou Y L, Chen J, Xu Y, et al.Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl- containing environment[J]. J. Mater. Sci. Technol., 2013, 29: 168
[7] Chen Y Y, Tzeng H J, Wei L I, et al.Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions[J]. Corros. Sci., 2005, 47: 1001
[8] Hu J D, Liu X Q, Liu Z L, et al.Effects of Cr addition on corrosion resistance of thin-wall high strength pile pipe steels[J]. Corros. Prot., 2014, 35: 1027(胡金东, 刘希琴, 刘子利等. 铬含量对薄壁高强度桩管钢腐蚀性能的影响[J]. 腐蚀与防护, 2014, 35: 1027)
[9] Yang J H, Liu Q Y, Wang X D, et al.The progress of investigation on weathering steel and its rust layer[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 367(杨景红, 刘清友, 王向东等. 耐候钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报, 2007, 27: 367)
[10] Diaz I, Cano H, de la Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity[J]. Corros. Sci., 2013, 76: 348
[11] Liu R, Chen X P, Wang X D, et al.Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment[J]. Hot Work. Technol., 2014, 40(20): 19(刘芮, 陈小平, 王向东等. 合金元素对耐候钢在海洋大气环境下耐蚀性的影响[J]. 热加工工艺, 2014, 40(20): 19)
[12] Liu X Q, Liu Z L, Hu J D, et al.The corrosion behavior of Cu/Cr containing tube pile steel in half-immersion environment[J]. Anti Corros. Methods Mater., 2016, 63: 281
[13] Zhang Y H.Study on CrNb microalloying rail steels [D]. Beijing: China Academy of Railway Sciences, 2001(张银花. CrNb微合金轨钢的研究 [D]. 北京: 铁道部科学研究院, 2001)
[14] Melchers R E.Effect on marine immersion corrosion of carbon content of low alloy steels[J]. Corros. Sci., 2003, 45: 2609
[15] Wang L W, Du C W, Liu Z Y, et al.Influences of Fe3C and pearlite on the electrochemical corrosion behaviors of low carbon ferrite steel[J]. Acta Metall. Sin., 2011, 47: 1227(王力伟, 杜翠薇, 刘智勇等. Fe3C和珠光体对低碳铁素体钢腐蚀电化学行为的影响[J]. 金属学报, 2011, 47: 1227)
[16] Fang Z H, Lian J F, Zhang L, et al.Use of a micro electrode to study the electrochemical behaviour of the microphases in 20 steel and 16Mn steel[J]. Corros. Sci. Prot. Technol., 1996, 8(3): 25(方智赫, 连建峰, 张琳等. 用微电极研究20钢和16Mn钢微区相电化学行为[J]. 腐蚀科学与防护技术, 1996, 8(3): 25)
[17] Sun M, Xiao K, Dong C F, et al.Electrochemical behaviors of ultra high strength steels with corrosion products[J]. Acta Metall. Sin., 2011, 47: 442(孙敏, 肖葵, 董超芳等. 带腐蚀产物超高强度钢的电化学行为[J]. 金属学报, 2011, 47: 442)
[18] Shi J J, Sun W.Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete[J]. Corros. Sci. Prot. Technol., 2011, 23: 387(施锦杰, 孙伟. 等效电路拟合钢筋锈蚀行为的电化学阻抗谱研究[J]. 腐蚀科学与防护技术, 2011, 23: 387)
[19] Xia Y, Cao F H, Chang L R, et al.Corrosion micro-and macro-electrochemical behavior of rusted carbon steel and weathering steel[J]. Chem. J. Chin. Univ., 2013, 34: 1246(夏妍, 曹发和, 常林荣等. 锈层下碳钢和耐候钢的微区和宏观腐蚀电化学行为[J]. 高等学校化学学报, 2013, 34: 1246)
[20] Cao G L, Li G M, Chen S, et al.Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels[J]. Acta Metall. Sin., 2010, 46: 748(曹国良, 李国明, 陈珊等. 典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较[J]. 金属学报, 2010, 46: 748)
[21] Wang C, Cao G W, Pan C, et al.Atmospheric corrosion of carbon steel and weathering steel in three environments[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39(汪川, 曹公旺, 潘辰等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究[J]. 中国腐蚀与防护学报, 2016, 36: 39)
[22] Hao L, Zhang S X, Dong J H, et al.Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion[J]. Metall. Mater. Trans., 2012, 43A: 1724
[23] Wang Z F, Li P H, Guan Y, et al.The corrosion resistance of ultra-low carbon bainitic steel[J]. Corros. Sci., 2009, 51: 954
[24] Cano H, Neff D, Morcillo M, et al.Characterization of corrosion products formed on Ni 2.4 wt%-Cu 0.5 wt%-Cr 0.5 wt% weathering steel exposed in marine atmospheres[J]. Corros. Sci., 2014, 87: 438
[25] Bhagavathi L R, Chaudhari G P, Nath S K.Mechanical and corrosion behavior of plain low carbon dual-phase steels[J]. Mater. Des., 2011, 32: 433
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[4] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[5] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[6] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[7] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[8] 耿振伟,肖代红. Zn对挤压态Mg-13Gd-2Cu合金的显微组织及腐蚀性能影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 595-603.
[9] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[10] 刘子利, 刘希琴, 王怀涛, 胡金东, 侯志国. Ti对Zn-5Al合金组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 515-522.
[11] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[12] 赵 凯 尹志民 段佳琦 邓 英. 时效处理工艺对1975合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 153-158.
[13] 刘子利,朱晓春,周桂斌,李健. Sb对Mg-5Al-2Sr合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 478-484.
[14] 张勇,覃作祥,许鸿吉,常凯,陆兴,佟维. 经济型铁素体不锈钢与耐候钢异种金属接头的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(2): 115-122.
[15] 黄本生,江仲英,潘欢欢,袁鹏斌,刘清友. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.