Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (1): 26-32    DOI: 10.11902/1005.4537.2016.242
  研究报告 本期目录 | 过刊浏览 |
高氮奥氏体不锈钢点蚀行为的电化学噪声特征
安朋亮1, 梁平1(), 任建民1, 史艳华1, 刘峰1, 陈思瑶2
1 辽宁石油化工大学机械工程学院 抚顺 113001
2 北方华锦化学工业集团有限公司 盘锦 124021
Characteristics on Electrochemical Noise of Pitting Corrosion for High Nitrogen Austenitic Stainless Steels
Pengliang AN1, Ping LIANG1(), Jianmin REN1, Yanhua SHI1, Feng LIU1, Siyao CHEN2
1 School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2 North Hua Jin Chemical Industries Group Corporation, Panjin 124021, China
全文: PDF(972 KB)   HTML
摘要: 

通过对电化学噪声数据进行时域、频域和Weibull分布等分析,比较了高氮奥氏体不锈钢 (HNSS) 和316L不锈钢 (316L SS) 在6% (质量分数) FeCl3溶液中的点蚀行为。时域分析结果表明,316L SS在溶液中浸泡5 h后,电位噪声和电流噪声均出现了噪声暂态峰,试样表面发生了亚稳态点蚀,而此时HNSS并没有出现明显的噪声暂态峰,电位噪声和电流噪声仅发生小幅高频波动,表面钝化膜虽发生轻微腐蚀,但仍具有一定的再钝化能力。316L SS的噪声电阻波动幅值较大,而HNSS噪声电阻幅值在小范围内波动,表面钝化膜的自钝化和修复能力优于316L SS。功率谱密度图像表明,316L SS的高频段斜率和白噪声水平强度均高于HNSS,且Weibull分布分析表明316L SS的点蚀孕育速率约是HNSS的2倍,316L SS更容易发生点蚀,HNSS的抗点蚀能力更强。

关键词 高氮不锈钢电化学噪声功率谱密度    
Abstract

The pitting corrosion behavior of high nitrogen stainless steel (HNSS) and 316L stainless steel (316L SS) in 6%(mass fraction) FeCl3 solution was compared by time domain, frequency domain spectrum and Weibull distribution analysis of electrochemical noise (EN) data. The time domain analysis results show that after immersion in the solution of 6%FeCl3 for 5 h, the noise transient peaks appear on the measured potential noise and current noise of 316L SS, implying the occurrence of metastable pitting, however, at the same time, the noise transient peak does not appear on the EN plot of HNSS, while the potential noise and current noise only presented a slight high-frequency fluctuations, indicating the surface passivation film suffered from slightly attack, while presented ability of repassivation to certain extent. Moreover, the noise resistance fluctuation amplitude of 316L SS is larger than that of HNSS, which suggesting the ability in self-passivation and re-healing of the passivation film of HNSS is better than that of 316L SS. Plots of power spectral density show that the values of slope of high frequency and plateau intensity of white noise of 316L SS are larger than those of HNSS, and the relevant Weibull distribution analysis reveals that the rate of pitting inoculation for 316L SS is twice of that for HNSS, which predicating that the 316L SS is much prone to pitting than HNSS.

Key wordshigh nitrogen stainless steel    electrochemical noise    power spectral density
收稿日期: 2016-12-22     
ZTFLH:  TG174.3  
基金资助:国家自然科学基金 (51175240)
作者简介:

作者简介 安朋亮,男,1990年生,硕士生

引用本文:

安朋亮, 梁平, 任建民, 史艳华, 刘峰, 陈思瑶. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
Pengliang AN, Ping LIANG, Jianmin REN, Yanhua SHI, Feng LIU, Siyao CHEN. Characteristics on Electrochemical Noise of Pitting Corrosion for High Nitrogen Austenitic Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 26-32.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.242      或      https://www.jcscp.org/CN/Y2018/V38/I1/26

图1  HNSS与316L SS在刚浸入到6%FeCl3溶液中时的电化学噪声曲线
图2  HNSS与316L SS在6%FeCl3溶液中浸泡5 h后的电化学噪声曲线
图3  HNSS与316L SS在6%FeCl3溶液中浸泡48 h后的电化学噪声曲线
图4  HNSS与316L SS在6%FeCl3溶液中腐蚀不同时间的噪声电阻倒数曲线
图5  HNSS与316L SS的功率谱密度
Steel 0 h 48 h 100 h 168 h
K / dBdec-1 W / A2Hz-1 K / dBdec-1 W / A2Hz-1 K / dBdec-1 W / A2Hz-1 K / dBdec-1 W / A2Hz-1
HNSS -0.3130 -12.0635 -1.3835 -9.1691 -1.7512 -7.4519 -2.0723 -8.0635
316L SS -2.2858 -21.3313 -1.6414 -15.6730 -2.0813 -15.7965 -2.1613 -14.5087
表1  HNSS和316L SS的PSD参数
图6  HNSS与316L SS的fn累积概率分布曲线
图7  HNSS与316L SS散粒噪声的Weibull分布图
Steel m k
HNSS 0.4145 10.8545
316L SS 0.5455 8.2502
表2  HNSS与316L SS散粒噪声的Weibull函数参数
图8  HNSS与316L SS的点蚀孕育速率曲线
[1] Yang K, Ren Y B, Wan P.High nitrogen nickel-free austenitic stainless steel: A promising coronary stent material[J]. Sci. China Tech. Sci., 2012, 55: 329
[2] Sun M, Luo M, Lu C, et al.Effect of alloying tin on the corrosion characteristics of austenitic stainless steel in sulfuric acid and sodium chloride solutions[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1089
[3] Poonguzhali A, Pujar M G, Mudali U K.Effect of nitrogen and sensitization on the microstructure and pitting corrosion behavior of AISI type 316LN stainless steels[J]. J. Mater. Eng. Perform., 2013, 22: 1170
[4] Cisneros M M, Valdés E, Vázquez D, et al.Development of austenitic nanostructures in high-nitrogen steel powders processed by mechanical alloying[J]. Metall. Mater. Trans., 2002, 33A: 2139
[5] Xiang H L, Huang W L, Liu D, et al.XPS analysis of corrosion product scale on surface of 29Cr super duplex stainless cast steel[J]. Corros. Sci. Prot. Technol., 2011, 23: 303(向红亮, 黄伟林, 刘东等. 29Cr超级双相不锈铸钢表面腐蚀XPS分析[J]. 腐蚀科学与防护技术, 2011, 23: 303)
[6] Lothongkum G, Wongpanya P, Morito S, et al.Effect of nitrogen on corrosion behavior of 28Cr-7Ni duplex and microduplex stainless steels in air-saturated 3.5 wt% NaCl solution[J]. Corros. Sci., 2006, 48: 137
[7] Qiao Y X, Liu F H, Ren A, et al.Erosion-corrosion behavior of high nitrogen stainless steel and commerical 321 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 141(乔岩欣, 刘飞华, 任爱等. 高氮钢和321不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32: 141)
[8] Chao K L, Liao H Y, Shyue J J, et al.Corrosion behavior of high nitrogen nickel-free Fe-16Cr-Mn-Mo-N stainless steels[J]. Metall. Mater. Trans., 2014, 45B: 381
[9] Zhang T, Yang Y G, Shao Y W, et al.Advances of the analysis methodology for electrochemical noise[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 1(张涛, 杨延格, 邵亚薇等. 电化学噪声分析方法的研究进展[J]. 中国腐蚀与防护学报, 2014, 34: 1)
[10] Ehsani A, Shiri H M, Mahjani M G, et al.Theoretical, common electrochemical and electrochemical noise investigation of inhibitory effect of new organic compound nanoparticles in the corrosion of stainless steel in acidic solution[J]. Trans. Indian Inst. Met., 2016, 69: 1519
[11] Li J, Zheng H J, Zheng Y, et al.A new information method to determinate corrosion types from electrochemical noise[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 449
[12] Pujar M G, Mudali U K, Singh S S.Electrochemical noise studies of the effect of nitrogen on pitting corrosion resistance of high nitrogen austenitic stainless steels[J]. Corros. Sci., 2011, 53: 4178
[13] Chen C M, Zhang T, Shao Y W, et al.Electrochemical noise analysis for corrosion of AZ91D magnesium alloy in alkaline chloride medium[J]. Corros. Sci. Prot. Technol., 2009, 21: 15(陈崇木, 张涛, 邵亚薇等. AZ91D镁合金在NaCl溶液中腐蚀过程的电化学噪声分析[J]. 腐蚀科学与防护技术, 2009, 21: 15)
[14] Li J, Zhao L, Li B W, et al.Electrochemical noise analysis of 304 stainless steel pitting corrosion in ferric chloride solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 235(李季, 赵林, 李博文等. 304不锈钢点蚀的电化学噪声特征[J]. 中国腐蚀与防护学报, 2012, 32: 235)
[15] Toppo A, Pujar M G, Mallika C, et al.Effect of nitrogen on stress corrosion behavior of austenitic stainless steels using electrochemical noise technique[J]. J. Mater. Eng. Perform., 2015, 24: 1140
[16] Bihade M S, Patil A P, Khobragade N K.Analysis of electrochemical current noise from metastable pitting of SS304L in NaCl solutions[J]. Trans. Indian Inst. Met., 2013, 66: 155
[17] Kim J J.Electrochemical noise analysis of localized corrosion by wavelet transform[J]. Met. Mater. Int., 2010, 16: 747
[18] Suresh G, Mudali U K.Electrochemical noise analysis of pitting corrosion of type 304L stainless steel[J]. Corrosion, 2014, 70: 283
[19] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms[J]. Corros. Sci., 2005, 47: 3280
[20] Jiang R Y.Family of Weibull Models: Properties, Parameter Estimation and Applications [M]. Beijing: Science Press, 1998(蒋仁言. 威布尔模型族: 特性、参数估计和应用 [M]. 北京: 科学出版社, 1998)
[21] Na K H, Pyun S I, Kim H P.Analysis of electrochemical noise obtained from pure aluminium in neutral chloride and alkaline solutions[J]. Corros. Sci., 2007, 49: 220
[22] Na K H, Pyun S I.Comparison of susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys in neutral chloride solutions using electrochemical noise analysis[J]. Corros. Sci., 2008, 50: 248
[23] Santamaria M, Franco F D, Di Quarto F, et al.Photoelectrochemical and XPS characterisation of oxide layers on 316L stainless steel grown in high-temperature water[J]. J. Solid State Electrochem., 2015, 19: 3511
[24] Rao V S, Singhal L K.Corrosion behavior and passive film chemistry of 216L stainless steel in sulphuric acid[J]. J. Mater. Sci., 2009, 44: 2327
[25] Cheng X Q, Li X G, Du C W.Properties of passive film formed on 316L/2205 stainless steel by Mott-Schottky theory and constant current polarization method[J]. Chin. Sci. Bull., 2009, 54: 2239(程学群, 李晓刚, 杜翠薇. 316L和2205不锈钢在醋酸溶液中钝化膜的生长及其半导体属性的研究[J]. 科学通报, 2009, 54: 104)
[26] Wu X Q, Fu Y, Huang J B, et al.Investigation on pitting corrosion of nickel-free and manganese-alloyed high-nitrogen stainless steels[J]. J. Mater. Eng. Perform., 2009, 18: 287
[27] Kamachi Mudali U, Bedivere R.Translated by Li J, Huang Y H. High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications [M]. Beijing: Chemical Industry Press, 2006(Kamachi Mudali U,Bedivere R著. 李晶, 黄运华译. 高氮钢和不锈钢: 生产、性能与应用 [M]. 北京: 化学工业出版社, 2006)
[1] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[2] 陈洁净,鞠虹,孙灿,李霞,刘雲飞. 电化学测试技术在垢下腐蚀中的应用[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[3] 吴欣强,付尧,柯伟,徐松,冯兵,胡波涛,陆佳政. 高氮奥氏体不锈钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[4] 刘士强, 王立达, 宗秋凤, 张成, 刘贵昌. 纯Al表面局部孔蚀的电化学噪声特征分析[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.
[5] 石维, 董泽华, 郭兴蓬. 基于Hilbert-Huang变换的电化学噪声解析及其应用[J]. 中国腐蚀与防护学报, 2014, 34(2): 138-146.
[6] 张涛, 杨延格, 邵亚薇, 孟国哲, 王福会. 电化学噪声分析方法的研究进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 1-18.
[7] 袁玮, 黄峰, 胡骞, 刘静, 侯震宇. 外加拉应力对X80管线钢点蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
[8] 常安乐,宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32(3): 247-250.
[9] 李季,赵林,李博文,郑丽群,韩恩厚. 304不锈钢点蚀的电化学噪声特征[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240.
[10] 乔岩欣,刘飞华,任爱,姜胜利,郑玉贵. 高氮钢和321不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
[11] 石秋梅,邵亚薇,张涛,孟国哲,陈琪昊. 磷酸锌对环氧涂层划痕的保护尺寸研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
[12] 唐俊文,邵亚薇,张涛,孟国哲,王福会. 饱和H2S对316L不锈钢腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 246-250.
[13] 黄文静;黄华良;邱于兵;陈振宇;郭兴蓬. 尺寸效应对微电极腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 141-144.
[14] 翁永基 李维锋 李相怡. 电化学噪声方法比较石油用钢的临界点蚀温度[J]. 中国腐蚀与防护学报, 2009, 29(6): 421-425.
[15] 黄家怿 邱于兵 郭兴蓬. 采用聚类分析研究X70钢在库尔勒土壤中初期电化学噪声特征[J]. 中国腐蚀与防护学报, 2009, 29(6): 453-458.