Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (5): 428-434    DOI: 10.11902/1005.4537.2016.218
  研究报告 本期目录 | 过刊浏览 |
聚苯胺/改性石墨复合材料的电化学制备及其防腐蚀性能研究
万起展,陈宁宁,杨培培,钟莲(),王燕华,王佳
中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
Synthesis and Corrosion Performance of Composites of Polyaniline/Modified Graphite
Qizhan WAN,Ningning CHEN,Peipei YANG,Lian ZHONG(),Yanhua WANG,Jia WANG
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdaog 266100, China
全文: PDF(841 KB)   HTML
摘要: 

采用恒电流法、恒电流阶跃电流法、循环伏安法及自聚合法等4种方法将聚苯胺 (PANI) 原位沉积在自制的改性石墨 (MGE) 上,制备出聚苯胺/改性石墨复合材料 (PANI/MGE)。利用扫描电镜和红外光谱对PANI/MGE的微观形貌和分子结构进行了表征,利用电化学阻抗谱研究了不同聚合方法所得复合材料的防腐蚀性能。结果表明,4种聚合方法所得复合材料微观形貌与聚合前的改性石墨相似,都呈现平面的片层结构,没有聚合物团簇聚集现象产生。4种聚合方法均能成功实现聚苯胺的原位沉积,聚苯胺与改性石墨之间存在较强的相互作用,且以恒电流阶跃所得复合材料中两者的相互作用最强。5种不同涂层中,恒电流阶跃聚合所得涂层的防腐蚀性能最好,稳定的自腐蚀电位及涂层阻抗最高;循环伏安聚合及恒电流聚合所得两种复合涂层的阻抗及自腐蚀电位均随时间的延长而逐渐下降,涂层很快失效。

关键词 聚苯胺活化石墨2Cr13不锈钢腐蚀    
Abstract

Polyaniline (PANi) was in situ deposited on the surface of modified graphite (MGE) via different electrochemical methods to prepare composites of PANi/MGE. Their morphology and microstructure were examined by scanning electron microscopy (SEM) and the Fourier transform infrared spectroscopy (FT-IR). While their anticorrosion properties were assessed by corrosion potential measurement and electrochemical impedance spectrometry. Experimental results showed that MGE as a support material can provide sufficient reaction sites for the deposition of aniline to form the film-like composites of PANI/MGE. There exists strong interaction at the interface of PANI and MGE. Test results of anticorrosion performance illustrated that among others, the composite of PANI/MGE prepared by polymerization with constant current step technique showed the best corrosion resistance and the highest open circuit potential.

Key wordsPolyaniline    modified graphite    2Cr13ss    corrosion
收稿日期: 2016-11-18     
基金资助:国家自然科学基金 (51131005) 和山东省优秀中青年科学家奖励基金 (BS2012HZ021)
作者简介: 万起展,男,1991年生,硕士生

引用本文:

万起展,陈宁宁,杨培培,钟莲,王燕华,王佳. 聚苯胺/改性石墨复合材料的电化学制备及其防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 428-434.
Qizhan WAN, Ningning CHEN, Peipei YANG, Lian ZHONG, Yanhua WANG, Jia WANG. Synthesis and Corrosion Performance of Composites of Polyaniline/Modified Graphite. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 428-434.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.218      或      https://www.jcscp.org/CN/Y2017/V37/I5/428

图1  MGE和4种不同方法制备的PANI/MGE复合材料及PANI的SEM像
图2  MGE及PANI/MGE的红外光谱
图3  涂覆PANI/MGE和MGE的2Cr13不锈钢电极在1 mol/L H2SO4溶液中浸泡不同时间的自腐蚀电位以及阻抗复数平面图
图4  涂覆恒电流阶跃电流聚合涂层的2Cr13不锈钢电极在1 molL-1 H2SO4溶液中腐蚀的等效电路
图5  涂覆恒电流阶跃聚合涂层和MGE涂层的不锈钢电极在1 molL-1 H2SO4溶液中浸泡不同时间后的电化学阻抗谱及其拟合结果
Immersion time / d Rs / Ωcm2 Q n Rc / Ωcm2 Cs / μF Rct / Ωcm2
1 3.4540 1.47×10-5 0.9147 5433 3.756×10-3 4675
3 0.8257 7.73×10-5 0.9334 5940 1.561×10-3 7784
10 12.7900 7.95×10-5 0.9222 6600 1.39×10-3 9015
15 1.6030 7.76×10-5 0.928 6853 1.461×10-3 10200
20 1.2130 8.16×10-5 0.9275 6849 1.335×10-3 9917
25 1.2130 7.75×10-5 0.9297 7709 1.314×10-3 9567
30 2.3450 7.77×10-5 0.9296 6899 1.362×10-3 9318
35 0.6940 1.21×10-5 0.9192 5802 1.497×10-3 9463
表1  涂覆恒电流阶跃聚合涂层的不锈钢电极在1 molL-1 H2SO4溶液中腐蚀时的等效电路中各电器元件的值
Immersion time/ d Rs / Ωcm2 Q n Rc / Ωcm2 Cs / μF Rct / Ωcm2
1 1.0930 1.47×10-4 0.9268 1426 0.0125 1764
3 1.5520 1.17×10-4 0.9048 1548 1.25×10-3 4348
10 0.8259 7.41×10-5 0.9351 1736 1.55×10-3 7239
15 0.7381 8.08×10-5 0.9419 1555 9.554×10-3 5321
20 0.8967 7.85×10-5 0.9448 1491 9.18×10-3 5236
25 0.8259 1.15×10-5 0.9025 1795 1.017×10-2 5477
30 1.6030 7.42×10-5 0.9300 1604 1.439×10-3 5278
35 1.2130 7.75×10-5 0.9297 1709 1.314×10-3 5325
表2  MGE涂层在1 molL-1 H2SO4溶液中腐蚀时的等效电路中各电器元件的值
[1] Xiao R J, Xiao G Q, Huang B, et al.Corrosion failure cause analysis and evaluation of corrosion inhibitors of Ma Huining oil pipeline[J]. Eng. Fail. Anal., 2016, 68: 113
[2] DeBerry D W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating[J]. J. Electrochem. Soc., 1985, 132: 1022
[3] Syed A A, Dinesan M K.Review: Polyaniline—a novel polymeric material[J]. Talanta, 1991, 38: 815
[4] Kang E T, Neoh K G, Tan K L.Polyaniline: A polymer with many interesting intrinsic redox states[J]. Prog. Polym. Sci., 1998, 23: 277
[5] Novák P, Müller K, Santhanam K S V, et al. Electrochemically active polymers for rechargeable batteries[J]. Chem. Rev., 1997, 97: 207
[6] Diaz A F, Logan J A.Electroactive polyaniline films[J]. J. Electroanal. Chem. Interf. Electrochem., 1980, 111: 111
[7] Lu C, Wang H R, Qu J E, et al.Application progress of carbon materials in metal corrosion protection[J]. Corros. Sci. Prot. Techol., 2014, 26: 254
[7] (路晨, 王海人, 屈钧娥等. 碳材料在金属防腐蚀中的应用研究进展[J]. 腐蚀科学与防护技术, 2014, 26: 254)
[8] Zhang F, Liu J J, Li X Y, et al.Application of graphite in anticorrosion paint[J]. Mater. Prot., 2007, 40(5): 27
[8] (张锋, 刘景军, 李效玉等. 石墨在防腐蚀涂料中使用的研究[J]. 材料保护, 2007, 40(5): 27)
[9] Gong Y N, Yu L J, Pan C X.Graphene and its applications in metal corrosion resistance: A review[J]. Chin. J. Ship Res., 2016, 11(1): 80
[9] (龚佑宁, 于连江, 潘春旭. 石墨烯及其在金属防腐中应用的研究进展[J]. 中国舰船研究, 2016, 11(1): 80)
[10] Gu L, Ding J H, Yu H B.Research in graphene-based anticorrosion coatings[J]. Prog. Chem., 2016, 28: 737
[10] (顾林, 丁纪恒, 余海斌. 石墨烯用于金属腐蚀防护的研究[J]. 化学进展, 2016, 28: 737)
[11] Deyab M A.Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell[J]. J. Power Sources, 2014, 268: 50
[12] Kumar A M, Gasem Z M.Effect of functionalization of carbon nanotubes on mechanical and electrochemical behavior of polyaniline nanocomposite coatings[J]. Surface Coat. Technol., 2015, 276: 416
[13] Mahato N, Cho M H.Graphene integrated polyaniline nanostructured composite coating for protecting steels from corrosion: Synthesis, characterization, and protection mechanism of the coating material in acidic environment[J]. Construct. Build. Mater., 2016, 115: 618
[14] Jafari Y, Ghoreishi S M, Shabani-Nooshabadi M.Polyaniline/Graphene nanocomposite coatings on copper: electropolymerization, characterization, and evaluation of corrosion protection performance[J]. Synth. Met., 2016, 217: 220
[15] Wang Huihui.Preparation and properties of Polyaniline/ carbon nanotube composite electroconductive and anticorrosive coating [D]. Tianjin University, 2013
[15] (王慧慧. 聚苯胺/碳纳米管复合导电防腐涂层的制备与性能研究 [D]. 天津大学, 2013)
[16] Kumar A M, Gasem Z M.In situ electrochemical synthesis of polyaniline/f-MWCNT nanocomposite coatings on mild steel for corrosion protection in 3.5%NaCl solution[J]. Prog. Org. Coat., 2015,78: 387
[17] Zhang L H, Li Y S, Wang D.Study on preparation and anti-corrosion properties of Polyaniline/Graphene waterborne coatings[J]. Proc. CSEE, 2015, 35(Suppl.): 170
[17] (张兰河, 李尧松, 王冬等. 聚苯胺/石墨烯水性涂料的制备及其防腐性能研究[J]. 中国电机工程学报, 2015, 35(增刊): 170)
[18] Chang C H, Huang T C, Peng C W, et al.Novel anticorrosion coatings prepared from polyaniline/graphene composites[J]. Carbon, 2012, 50: 5044
[19] Sun W, Wang L D, Wu T T, et al.Synthesis of low-electrical-conductivity graphene/pernigraniline composites and their application in corrosion protection[J]. Carbon, 2014, 79: 605
[20] Fan X Z, Xu H B, Lu Y H, et al.Electrochemical modification and its effect on the pseudocapacitive properties of a graphite electrode[J]. New Carbon Mater., 2014, 29: 508
[20] (范新庄, 徐海波, 芦永红等. 石墨电极电化学活化工艺与准电容特性[J]. 新型炭材料, 2014, 29: 508)
[21] Fan X Z, Gao H, Zhong L, et al.Investigation of the capacitive performance of polyaniline/modified graphite composite electrodes[J]. RSC Adv., 2015, 5: 3743
[22] Wang H L, Hao Q L, Yang X J, et al.Effect of graphene oxide on the properties of its composite with polyaniline[J]. ACS Appl. Mater. Interfaces, 2010, 2: 821
[23] Chen F, Liu P, Zhao Q Q.Well-defined graphene/polyaniline flake composites for high performance supercapacitors[J]. Electrochim. Acta, 2012, 76: 62
[24] Li X L, Zhong Q N, Zhang X L, et al.In situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance[J]. Thin Solid Films, 2015, 584: 348
[25] Zhang Q H, Wang X H, Jing X B.Synthesis of polyaniline and its spectra properties[J]. Chem. World, 2001, 42: 242
[25] (张清华, 王献红, 景遐斌. 聚苯胺的合成及其光谱特性[J]. 化学世界, 2001, 42: 242)
[26] Zhang Y, Wang G J, Pan M.Fast electropolymerization of polyaniline nanofibers on carbon paper[J]. Chem. J. Chin. Univ., 2014, 35: 2234
[26] (张悦, 汪广进, 潘牧. 基于碳纸电极电化学快速合成聚苯胺纳米纤维[J]. 高等学校化学学报, 2014, 35: 2234)
[27] Jin X X, Zhong L, Wan Q Z, et al.Preparation and capacitive property of polyaniline/modified graphite electrode[J]. New Chem. Mater., 2017, 45(6): 103
[27] (金晓晓, 钟莲, 万起展等. 聚苯胺/改性石墨电极的制备及电容性能研究[J]. 化工新型材料, 2017, 45(6): 103)
[28] Zhong L, Hu J, Zhu H, et al.A mechanism of corrosion protection of polyaniline on 2Cr13 stainless steel in acidic solution[J]. J. Wuhan Univ.(Nat. Sci. Ed.), 2006, 52: 154
[28] (钟莲, 胡捷, 朱华等. 聚苯胺对2Cr13不锈钢无氧钝化的机理探讨[J]. 武汉大学学报(理学版), 2006, 52: 154)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.