Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (1): 81-86    DOI: 10.11902/1005.4537.2016.217
  本期目录 | 过刊浏览 |
自组装PFOA分子膜对带锈Q235钢腐蚀行为影响
左银泽1, 许宝华2, 朱桂生2, 黄诚2, 冯清1, 陈亮1, 李照磊1, 高延敏1()
1 江苏科技大学材料科学与工程学院 镇江 212003
2 江苏索普 (集团) 有限公司 镇江 212006
Influence of Surface-active Agent PFOA Molecular Film on Rust Removal and Corrosion Behavior of Rusty Carbon Steel
Yinze ZUO1, Baohua XU2, Guisheng ZHU2, Cheng HUANG2, Qing FENG1, Liang CHEN1, Zhaolei LI1, Yanmin GAO1()
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Jiangsu SOPO Company, SOPO Co., Ltd., Zhenjiang 212006, China
全文: PDF(2582 KB)   HTML
摘要: 

使用全氟辛酸铵 (PFOA) 作为锈层处理剂,研究了PFOA浓度变化对清洗带锈Q235钢表面锈层效果和Q235钢腐蚀行为的影响。使用EDS、SEM分析技术以及接触角、电化学极化曲线和电化学阻抗等测试方法对经1,10,100,150和200 g/L的PFOA溶液处理后Q235钢表面的化学结构、基本组成、表面形貌、润湿性和耐腐蚀性等进行表征。结果表明:PFOA溶液具有扩散性和润湿性,并能透过多孔锈层渗透到基材表面,与表面Fe离子发生配位作用,通过分子自组装的方式形成分子膜。该吸附膜破坏了锈层和基材的结合,有利于锈层的清理。PFOA浓度为150 g/L时的除锈效果最好;相比于空白样品,表面锈层基本消失,接触角增大111.9%,CuSO4点滴实验变色时间延长70%,腐蚀电流降低53.3%,表面膜容抗电阻增加193%。

关键词 PFOA分子膜带锈表面表面处理电化学    
Abstract

High surface-active ammonium perfluorooctanoic acid (PFOA) was selected as a surface treatment agent, and the influence of the concentration of PFOA on the rust removal effect for the rust scale and the corrosion behavior of the cleaned Q235 steel was investigated. The rust Q235 steel samples were derust in solutions with 1, 10, 100, 150 and 200 g/L PFOA respectively, and which then were characterized by means of contact angle measurement, electrochemical polarization curve measurement, and electrochemical impedance spectroscopy and SEM with EDS . Results show that PFOA solution has great speadability and wettability for the surface of rust steel and can penetrate the porous rust scale to the substrate surface to form adsorption film, which can weaken and even destroy the bonding between the rust and the substrate, thereby the rust can easy spall off. Among others the solution with 150 g/L PFOA presented the best derusting efficiency, i.e. the rust scale was completely removed, correspondingly the contact angle, the time of corrosion occurrence by copper sulfate drop test and electrochemical impedance all increased by 111.9%, 70% and 193% respectively, while the corrosion current decreased by 53.3% for the derust steel in comparison with the reference one.

Key wordsPFOA molecular film    rusty surface    surface treatment    electrochemical
收稿日期: 2016-11-07     
ZTFLH:  TG17  
基金资助:国家自然科学基金 (51075197),江苏省产学研前瞻 (BY2013066-12) 和江苏科技大学研究生创新基金 (YCX11S-24)
作者简介: 作者简介 左银泽,男,1992年生,硕士生

引用本文:

左银泽, 许宝华, 朱桂生, 黄诚, 冯清, 陈亮, 李照磊, 高延敏. 自组装PFOA分子膜对带锈Q235钢腐蚀行为影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 81-86.
Yinze ZUO, Baohua XU, Guisheng ZHU, Cheng HUANG, Qing FENG, Liang CHEN, Zhaolei LI, Yanmin GAO. Influence of Surface-active Agent PFOA Molecular Film on Rust Removal and Corrosion Behavior of Rusty Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 81-86.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.217      或      https://www.jcscp.org/CN/Y2018/V38/I1/81

图1  Q235钢表面腐蚀产物的SEM像和EDS结果
图2  Q235钢表面腐蚀产物的XRD谱
图3  带锈Q235钢试样经去离子水和不同浓度PFOA溶液浸泡后的宏观形貌
图4  带锈Q235钢试样经去离子水和不同浓度PFOA溶液浸泡后的表面微观形貌 左银泽等:自组装PFOA分子膜对带锈Q235钢腐蚀行为影响
图5  带锈Q235钢试样经去离子水和不同浓度PFOA溶液浸泡后的极化曲线
Concentration of PFOA / gL-1 E / mV I / Acm-2
0 588.51 1.46×10-4
1 603.92 1.12×10-4
10 610.47 9.21×10-5
100 613.09 8.93×10-5
150 621.77 6.82×10-5
200 608.15 8.27×10-5
表1  带锈Q235钢试样经去离子水和不同浓度PFOA溶液浸泡后的腐蚀电位和腐蚀电流密度
图6  带锈Q235钢试样经去离子水和不同浓度PFOA溶液浸泡后的电化学阻抗谱
图7  带锈Q235钢试样经去离子水和不同浓度PFOA溶液浸泡后的等效电路图
[1] Yang X F, Zheng W L.Analysis on the corrosion rust of weathering steel and carbon steel exposed to atmosphere for two years[J]. Corros. Prot., 2002, 23: 97(杨晓芳, 郑文龙. 暴露2年的碳钢与耐候钢表面锈层分析[J]. 腐蚀与防护, 2002, 23: 97)
[2] Zhang Q C, Wu J S, Zheng W L, et al.Formation mechanism of protective rust on weathering steel[J]. Corros. Sci. Prot. Technol., 2001, 13: 143(张全成, 吴建生, 郑文龙等. 耐候钢表面稳定锈层形成机理的研究[J]. 腐蚀科学与防护技术, 2001, 13: 143)
[3] Li Q X, Wang Z Y, Han W, et al.Analysis on the corrosion rust of carbon steel exposed to salt lake area for 25 months[J]. Acta Phys.- Chim. Sin., 2008, 24: 1459(李巧霞, 王振尧, 韩薇等. 盐湖地区暴露25个月的碳钢表面锈层分析[J]. 物理化学学报, 2008, 24: 1459)
[4] Raman A, Kuban B, Razvan A.The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products[J]. Corros. Sci., 1991, 32: 1295
[5] Qian B, Hou B R, Zheng M.The inhibition effect of tannic acid on mild steel corrosion in seawater wet/dry cyclic conditions[J]. Corros. Sci., 2013, 72: 1
[6] Gao Y C.Pickling technology (II)[J]. Surf. Technol., 1990, 19(2): 43(高元成. 酸洗除锈技术 (II)[J]. 表面技术, 1990, 19(2): 43)
[7] Lin G N, Chen X Y, Tang B, et al.The cleaner production of pickling steel for iron steel parts with rust in fix quantify[J]. Guangdong Chem. Ind., 2008, 35(5): 56(林国宁, 陈欣义, 汤兵等. 钢铁化学酸洗除锈清洁生产过程[J]. 广东化工, 2008, 35(5): 56)
[8] Rahim A A, Kassim M J, Rocca E, et al.Mangrove (Rhizophora apiculata) tannins: An eco-friendly rust converter[J]. Corros. Eng. Sci. Technol., 2011, 46: 425
[9] Collazo A, Nóvoa X R, Pérez C, et al.The corrosion protection mechanism of rust converters: An electrochemical impedance spectroscopy study[J]. Electrochim. Acta, 2010, 55: 6156
[10] Xiao J X, Jiang H.Fluorinated surfactants[J]. China Surf. Deter. Cosmet., 2001, 31(5): 24(肖进新, 江洪. 碳氟表面活性剂[J]. 日用化学工业, 2001, 31(5): 24)
[11] Zhao C X, Xu K Q, Tang C M.Study on fluorocarbon surfactant[J]. Sichuan Chem. Ind., 2004, 7(3): 13)(赵春霞, 徐卡秋, 唐聪明. 氟碳表面活性剂研究[J]. 四川化工, 2004, 7(3): 13)
[12] Key B D, Howell R D, Criddle C S.Fluorinated organics in the biosphere[J]. Environ. Sci. Technol., 1997, 31: 2445
[13] Wang Q, Nan S F, Dou M.Experimental investigation on nanofiltration treatment of waste water containing low concentration ammonium perfluorooctanoate[J]. J. Chem. Eng. Chin. Univ., 2008, 22: 684(王钦, 南碎飞, 窦梅. 纳滤法处理低浓度全氟辛酸铵废水的研究[J]. 高校化学工程学报, 2008, 22: 684)
[14] Nan S F, Wang F, Wang Q, et al.Process integration of nanofiltration and foam separation for disposal of waste water with low concentration ammonium perfluorooctanoate[J]. J. Chem. Eng. Chin. Univ., 2009, 23: 709(南碎飞, 王斐, 王钦等. 纳滤和泡沫分离联合处理含全氟辛酸铵废水的研究[J]. 高校化学工程学报, 2009, 23: 709)
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[6] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[8] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[9] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[10] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[13] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[14] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[15] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.