Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 126-134    DOI: 10.11902/1005.4537.2016.212
  研究报告 本期目录 | 过刊浏览 |
原油沉积水对Q235B碳钢的腐蚀影响
程庆利1,2(),陶彬1,刘栓3(),刘全桢1,张卫华1,田松柏2,王立平3
1 中国石化青岛安全工程研究院 青岛 266071
2 中国石化石油化工科学研究院 北京 100083
3 中国科学院宁波材料技术与工程研究所 宁波 315201
Corrosion Behaviour of Q235B Carbon Steel in Sediment Water From Crude Oil
Qingli CHENG1,2(),Bin TAO1,Shuan LIU3(),Quanzhen LIU1,Weihua ZHANG1,Songbai TIAN2,Liping WANG3
1 SINOPEC Qingdao Research Institute of Safety Engineering, Qingdao 266071, China
2 SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China
3 Institute of Materials Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(6069 KB)   HTML
摘要: 

采用电化学阻抗、丝束电极、SEM/EDS和XRD的分析方法,研究原油沉积水对Q235B碳钢腐蚀行为的影响。结果表明,碳钢在沉积水中浸泡21 d过程中,腐蚀速率逐渐降低,腐蚀形式以均匀腐蚀为主;而从21~35 d浸泡过程中,碳钢的腐蚀速率逐渐增大,且腐蚀程度加剧,腐蚀形态由均匀腐蚀为主转变为以点蚀为主的局部腐蚀,点蚀的大小和密集度增加。这是由于在起始阶段,碳钢表面沉积一层CaCO3,有效地阻碍了腐蚀,而随着时间的延长,CaCO3逐渐失去对碳钢基体的保护,从而加速局部腐蚀的发生。

关键词 原油沉积水Q235B碳钢腐蚀丝束电极    
Abstract

With the increasing import of high-sulfur oils, the storage tank bottom plates suffer severe corrosion from sediment water, which often cause the leakage of crude oil and result in serious economic loss and environmental pollution. The corrosion behavior of Q235B carbon steel in sediment water from crude oil was investigated by means of electrochemical impedance spectroscopy, wire beam electrode, electrochemical measurements and SEM/XRD techniques. Results showed that during the initial immersion period of 21 d the carbon steel suffered from uniform corrosion and its corrosion rate decreased with time. Afterwards, the corrosion was transformed to localized corrosion and its corrosion rate increased with time during the period of 21~35 d of immersion. The fact can be explained that the carbon steel surface was covered by scale of CaCO3, and the corrosion process can be hindered. However, corrosion pits were initiated and accelerated with increasing of time due to loss of corrosion protection from CaCO3 deposits after 21 d.

Key wordssediment water of curde oil    Q235B carbon steel    corrosion    wire beam electrode
收稿日期: 2016-10-27     
基金资助:中国石化安全工程研究院资金 (Y-199和Y-200),国家自然科学基金 (41506098),中国博士后基金和第九批特等 (2015M580528和2016T90553) 及宁波市自然科学基金 (2016A610261)

引用本文:

程庆利,陶彬,刘栓,刘全桢,张卫华,田松柏,王立平. 原油沉积水对Q235B碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.
Qingli CHENG, Bin TAO, Shuan LIU, Quanzhen LIU, Weihua ZHANG, Songbai TIAN, Liping WANG. Corrosion Behaviour of Q235B Carbon Steel in Sediment Water From Crude Oil. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 126-134.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.212      或      https://www.jcscp.org/CN/Y2017/V37/I2/126

图1  10×10电极阵列及在模拟储罐底部沉积水环境下三电极测试腐蚀行为示意图
图2  在原油沉积水中浸泡不同时间过程中,Q235B碳钢的腐蚀产物形貌SEM像
图3  在原油沉积水中浸泡不同时间过程中, Q235B碳钢表面除去腐蚀产物后的腐蚀形貌SEM像
图4  Q235B碳钢在沉积水中浸泡35 d过程中腐蚀失重随时间的变化
图5  碳钢在沉积水中浸泡第35 d时,碳钢表面局部腐蚀产物的SEM像及EDS测试结果
图6  在沉积水中浸泡第35 d时,碳钢表面沉积物的XRD谱
图7  Q235B钢试样在原油沉积水中浸泡35 d过程中的EIS图
图8  Q235B碳钢在沉积水中浸泡不同时间后的EIS拟合等效电路图
图9  在原油沉积水中浸泡35 d过程中腐蚀速率1/Rct与时间的关系
图10  在不同时间下丝束电极表面电位和电流分布图
图11  在原油丝束电极表面局部腐蚀因子 (LF) 随时间的变化
图12  在沉积水中浸泡35 d后Q235B碳钢腐蚀机理图
[1] News. The first phase of national petroleum reserve putting-in-service proactively total capacity of 16.4 million cubic meters[J]. East Chin Electr. Power, 2014, 42(11): 2283
[1] (本刊讯. 国家石油储备一期工程投用总库容1640万m3[J]. 华东电力, 2014, 42(11): 2283)
[2] Medvedeva M L, Tiam T D.Classification of corrosion damage in steel storage tanks[J]. Chem. Petrol. Eng., 1998, 34: 620
[3] Shuai J, Han K J, Xu X R.Risk-based inspection for large-scale crude oil tanks[J]. J. Loss Prevent. Proc. Ind., 2012, 25: 166
[4] Resource protection international, lastfire project coordinators for the lastfire project steering group. Lastfire, project updata large atmospheric storage tank fire-Incident survey for: 1984-2011 [R]. 2012
[5] Chen C M.Reason analyzing of crude oil tank bottom plate leak and measure[J]. Inner Mongolia Petrochem. Ind., 2010, 36(14): 47
[5] (陈春梅. 原油罐罐底板泄漏的原因分析及修复对策[J]. 内蒙古石油化工, 2010, 36(14): 47)
[6] Wu Y S.Methods for Corrosion Research [M]. Beijing: Metallurgical Industry Press, 1993
[6] (吴荫顺. 金属腐蚀研究方法 [M]. 北京: 冶金工业出版社, 1993)
[7] Zhu W S, Sheng G, Sun Q Z.Corrosion control of bottom plates of erude oil storage tanks in oil refineries[J]. China Petrol. Mach., 2000, 28(12): 19
[7] (朱文胜, 盛刚, 孙庆祝. 炼油厂原油罐底板的腐蚀与防护[J]. 石油机械, 2000, 28(12): 19)
[8] Groysman A.Corrosion in Systems for Storage and Transportation of Petroleum Products and Biofuels: Identification, Monitoring and Solutions[M]. Netherlands: Springer, 2014
[9] Gao D P, Yu H, Zhou Y Y, et al.Analyses of corrosion and protection status of tank in island environment[J]. Sichuan Chem. Ind., 2014, 17(3): 30
[9] (高德朋, 俞虹, 周芸芸等. 海岛环境下油罐腐蚀与防护现状分析[J]. 四川化工, 2014, 17(3): 30)
[10] de Oliveira Souza M, Ribeiro M A, Carneiro M T W D, et al. Evaluation and determination of chloride in crude oil based on the counterions Na, Ca, Mg, Sr and Fe, quantified via ICP-OES in the crude oil aqueous extract[J]. Fuel, 2015, 154: 181
[11] Rios E C, Zimer A M, Mendes P C D, et al. Corrosion of AISI 1020 steel in crude oil studied by the electrochemical noise measurements[J]. Fuel, 2015, 150: 325
[12] Soares C G, Garbatov Y, Zayed A, et al.Corrosion wastage model for ship crude oil tanks[J]. Corros. Sci., 2008, 50: 3095
[13] Wang Z L, Zhang J, Wang Z M, et al.Emulsification reducing the corrosion risk of mild steel in oil-brine mixtures[J]. Corros. Sci., 2014, 86: 310
[14] Larsen K R.Roundtable Q & A: Managing corrosion of pipelines that transport crude oils[J]. Mater. Perform., 2013, 52: 28
[15] Liu Y C, Zhang Y L, Yuan J M, et al.Research on corrosion perforation on pipeline by media of high salinity acidic oil-water mixture[J]. Eng. Fail. Anal., 2013, 34: 35
[16] Liu X Y, Zhao G L, Zhong S S, et al.Time-variant reliability analysis of tank bottom shell considering corrosion[J]. J. China Univ. Petrol.(Nat. Sci. Ed.), 2013, 37(1): 119
[16] (刘雪云, 赵光连, 钟诗胜等. 考虑腐蚀储罐底圈壁板的时变可靠度分析[J]. 中国石油大学学报 (自然科学版), 2013, 37(1): 119)
[17] Huang J H, Liang J Z, Li L, et al.Corrosion evaluation and protection for wellbore and surface pipeline by in-situ combustion process[J]. Xinjiang Petrol. Geol., 2013, 34: 101
[17] (黄继红, 梁金中, 李路等. 火驱生产中井筒及地面管线腐蚀评价与防护[J]. 新疆石油地质, 2013, 34: 101)
[18] Du Q Z, Xie G, Yang M H, et al.Analysis of well pipe string corrosion factors in Huabei oilfield[J]. J. Southwest Petrol. Univ.(Sci. Technol. Ed.), 2013, 35(3): 142
[18] (杜清珍, 谢刚, 杨梅红等. 华北油田油井腐蚀原因分析[J]. 西南石油大学学报(自然科学版), 2013, 35(3): 142)
[19] Zhang Y C, Wang H H, Li Y X, et al.Generation mechanism and corrosion for hydrogen sulfide in oil well of 3rd oil plant in qinghai oilfield[J]. J. Southwest Petrol. Univ.(Sci. Technol. Ed.), 2011, 33(1): 151
[19] (张永成, 王洪辉, 李应祥等. 青海油田三厂硫化氢形成机理及腐蚀性研究[J]. 西南石油大学学报(自然科学版), 2011, 33(1): 151)
[20] Wu K D, Zeng W M, Wang W Q, et al.Static specimen experimental study for corrosion in sedimentary water from crude oil storage tank[J]. Chem. Equip. Technol., 2013, 34(6): 13
[20] (邬康迪, 曾为民, 汪文强等. 原油储罐沉积水腐蚀的静态挂片实验研究[J]. 化工装备技术, 2013, 34(6): 13)
[21] Zhao X E, Jiang J C, Wang Y Z, et al.Study on corrosion of Q235-B steel crude oil tanks[J]. Corros. Prot. Petrochem. Ind., 2008, 25(3): 4
[21] (赵雪娥, 蒋军成, 王永忠等. Q235-B钢在原油储罐中的腐蚀及其机理[J]. 石油化工腐蚀与防护, 2008, 25(3): 4)
[22] Zhang Z H, Chen B Z, Li J H, et al.On spontaneous combustion characteristics of the iron sulfides in oil tanks containing sulfur[J]. J. Saf. Environ., 2007, 7(3): 124
[22] (张振华, 陈宝智, 李君华等. 含硫油品储罐腐蚀产物自燃性的研究[J]. 安全与环境学报, 2007, 7(3): 124)
[23] Zhao X E, Jiang J C, Yang M, et al.Corrosion mechanism of atmosphere exposed area of oil tank filled with sulfur-containing petroleum[J]. Mater. Prot., 2007, 40(12): 22
[23] (赵雪娥, 蒋军成, 杨猛等. 含硫油品储罐气相空间腐蚀机理研究[J]. 材料保护, 2007, 40(12): 22)
[24] Zhu J X.Causes leading to corrosion of the bottom plate of crude oil stock tank and measures for protection[J]. Mater. Prot., 2009, 42(5): 56
[24] (朱吉新. 原油储罐底板腐蚀的原因及其防护措施[J]. 材料保护, 2009, 42(5): 56)
[25] Zhu C F, Xu F, Wu L, et al.Investigation and evaluation for outer corrosion of crude oil tank of Zhuyun CO., YPC[J]. Corros. Sci. Prot. Technol., 2005, 17: 209
[25] (朱承飞, 徐峰, 武烈等. 扬子石化贮运厂原油储罐外腐蚀调查及评估[J]. 腐蚀科学与防护技术, 2005, 17: 209)
[26] Park S, Kitsukawa S, Katoh K, et al.Development of AE monitoring method for corrosion damage of the bottom plate in oil storage tank on the neutral sand under loading[J]. Mater. Trans., 2006, 47: 1240
[27] Wang K, Huang S L, Zhao W.Data acquisition and analysis system for a magnetic flux leakage tank floor corrosion scanner[J]. J. Tsinghua Univ.(Sci. Technol.), 2008, 48: 20
[27] (王珅, 黄松岭, 赵伟. 储罐底板腐蚀检测数据采集和分析软件的开发[J]. 清华大学学报(自然科学版), 2008, 48: 20)
[28] Monteiro M J, Saunders S R J, Rizzo F C. The effect of water vapour on the oxidation of high speed steel, kinetics and scale adhesion[J]. Oxid. Met., 2011, 75: 57
[29] Tang J W, Shao Y W, Chen Z, et al.Corrosion behavior of carbon steel in H2S-HCl-H2O at 90 ℃ II- the effect of HCl concentration on corrosion behavior of carbon steel in H2S solutions[J]. Corros. Sci. Prot. Technol., 2011, 31: 34
[29] (唐俊文, 邵亚薇, 陈阵等. 碳钢在90 ℃、H2S-HCl-H2O环境下的腐蚀行为II-H2S溶液中HCl浓度对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2011, 31: 34)
[30] Ketrane R, Saidani B, Gil O, et al.Efficiency of five scale inhibitors on calcium carbonate precipitation from hard water: Effect of temperature and concentration[J]. Desalination, 2009, 249: 1397
[31] de Waard C, Lotz U, Milliams D E. Predictive model for CO2 corrosion engineering in wet natural gas pipelines[J]. Corrosion, 1991, 47: 976
[32] Cheng Q L, Tao B, Song L Y, et al.Corrosion behaviour of Q235B carbon steel in sediment water from crude oil[J]. Corros. Sci., 2016, 111: 61
[33] Cheng Q L, Song S H, Song L Y, et al.Effect of relative humidity on the initial atmospheric corrosion behavior of zinc during drying[J]. J. Electrochem. Soc., 2013, 160: C380
[34] Dong Z H, Shi W, Guo X P.Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution[J]. Corros. Sci., 2011, 53: 1322
[35] Han D, Jiang R J, Cheng Y F.Mechanism of electrochemical corrosion of carbon steel under deoxygenated water drop and sand deposit[J]. Electrochim. Acta, 2013, 114: 403
[36] Reffass M, Sabot R, Jeannin M, et al.Effects of NO2- ions on localised corrosion of steel in NaHCO3+NaCl electrolytes[J]. Electrochim. Acta, 2007, 52: 7599
[37] Okada T.A two-step initiation hypothesis of pitting corrosion in passive metals[J]. Corros. Sci., 1990, 31: 453
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.