Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 543-548    DOI: 10.11902/1005.4537.2016.208
  研究报告 本期目录 | 过刊浏览 |
304不锈钢在海洋环境混凝土模拟液中的腐蚀行为
苗伟行1,胡文彬1,高志明1(),孔宪刚1,赵茹2,唐军务2
1. 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300350
2. 海军工程大学勤务学院 天津 300450
Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment
Weihang MIAO1,Wenbin HU1,Zhiming GAO1(),Xiangang KONG1,Ru ZHAO2,Junwu TANG2
1. Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China;
2. The Service Institute, Naval Engineering University, Tianji 300450, China
全文: PDF(850 KB)   HTML
摘要: 

模拟混凝土失效不同时期的孔隙液环境,并通过循环极化曲线、电化学阻抗谱、M-S测试技术研究了304SS在模拟混凝土孔隙液中的耐蚀性。结果表明,在不同pH值以及不同Cl-浓度模拟环境下,304SS钝化膜的耐蚀性随着pH值的降低以及Cl-浓度的升高而降低;且在pH值为13的环境下钝化膜耐蚀性远高于pH值为9和11的,但在高pH值下孔蚀坑内流出的腐蚀产物会对钝化膜起破坏作用。通过电化学阻抗谱和M-S测试分析了不同pH值环境下钝化膜耐蚀性及其钝化膜半导体特征,表明在pH值为13的饱和NaCl环境下钝化膜电阻远高于pH值为9和11的,不同环境下304SS钝化膜在开路电位下均呈现N型半导体性质。表明海洋环境条件下,随混凝土碳化过程和Cl-的富集造成的腐蚀环境改变会对304SS产生重要影响,304SS钝化膜稳定性降低,发生腐蚀的倾向性增加。

关键词 304SS混凝土模拟液电化学阻抗谱Mott-Schottkey循环极化曲线    
Abstract

The pore solutions of different periods of concrete lifetime were simulated by varying the pH value, then the corrosion performance of 304SS was studied by means of polarization curves, EIS, M-S testing technology in the simulated concrete pore solutions. It shows that the corrosion resistance of the formed passive film will decrease with the decreasing of pH value and increasing of the chloride ion concentration. The corrosion resistance of passive film formed in the solution with pH=13 is much higher than that in solutions with pH=9 and pH=11. It is noted that the insoluble corrosion product formed in solutions with higher pH spilled from corrosion pits will damage the passive film. The passive films formed in solutions with different pH values show characteristics of N-type semiconductor under open circuit potential, however the electrical resistance of the passive film formed in chloride saturated solutions with pH=13 is much higher than those with pH=9 and 11. It is expected that the concrete carbonation and the permeation of chloride ion may occur during the service of stainless steel reinforced concrete structures in marine environments, which can have important impact on the passive film of 304SS, such as reducing the stability of the passive film and/or increasing the corrosion-susceptibility of the steel.

Key words304SS    simulated concrete pore solution    EIS    Mott-Schottkey    polarization curve
    
基金资助:国家自然科学基金项目 (51131007),天津市自然科学基金项目 (14JCYBJC17700) 和海军工程大学基金项目(HGDQNJJ15024) 资助

引用本文:

苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
Weihang MIAO, Wenbin HU, Zhiming GAO, Xiangang KONG, Ru ZHAO, Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 543-548.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.208      或      https://www.jcscp.org/CN/Y2016/V36/I6/543

图1  304SS试样在不同浓度NaCl溶液中的循环极化曲线
图2  击穿电位与Cl-浓度的关系
图3  滞后环面积与Cl-浓度关系
图4  击穿电位随pH值的变化
图5  304SS试样在饱和NaCl溶液中不同pH值环境下的点蚀坑形貌
图6  304SS在pH值为9, 11和13的饱和NaCl溶液中浸泡72 h后的EIS图及其拟合电路
pH value RS / Ωcm2 Q1 / Fcm2 n1 R1 / Ωcm2 Q2 / Fcm2 n2 R2 / Ωcm2
9 1.828 1.152×10-5 0.9999 32.67 1.959×10-5 0.8145 1.257×108
11 1.979 2.422×10-5 0.9541 41.23 5.884×10-6 0.7866 1.039×107
13 1.742 2.182×10-5 0.9683 7723 5.421×10-6 0.7935 3.574×106
表1  304SS在pH值为9, 11和13的饱和NaCl溶液中浸泡72 h后的阻抗谱拟合数据
图7  304SS试样在不同pH值的饱和NaCl溶液中浸泡72 h后的M-S数据
[1] Garcia-Alonso M C, Escudero M L, Miranda J M, et al. Corrosion behaviour of new stainless steels reinforcing bars embedded in concrete[J]. Cem. Concr. Res., 2007, 37(10): 1463
[2] Lu P, Sharifi-Asl S, Kursten B, et al.The irreversibility of the passive state of carbon steel in the alkaline concrete pore solution under simulated anoxic conditions[J]. J. Electrochem. Soc., 2015, 162(10): C572
[3] Abreu C M, Cristóbal M J, Nóvoa X R, et al.Modifications of the stainless steels passive film induced by cerium implantation[J]. Surf. Coat. Technol., 2002, 158: 582
[4] Xia D H, Zhu R K, Yashar B, et al.Understanding the interaction of thiosulfate with Alloy 800 in aqueous chloride solutions using SECM[J]. J. Electroanal. Chem., 2015, 744: 77
[5] Freire L, Carmezim M J, Ferreira M G S, et al. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides[J]. Electrochem. Acta, 2011, 56(14): 5280
[6] Poursaee A, Hansson C M.Reinforcing steel passivation in mortar and pore solution[J]. Cem. Concr. Res., 2007, 37(7): 1127
[7] Mangat P S, Limbachiya M C.Effect of initial curing on chloride diffusion in concrete repair materials[J]. Cem. Concr. Res., 1999, 29(9): 1475
[8] Yu X W, Cao C N.Evaluation of corrosion resistance of rare earth metal (REM) conversion films on LY12 alloy with cyclic anodic polarization curve[J]. Corros. Sci. Prot. Technol., 2001, 13(1): 49
[8] (于兴文, 曹楚南. 循环阳极极化曲线评价LY12A1合金表面稀土转化膜耐腐蚀性能的研究[J]. 腐蚀科学与防护技术, 2001, 13(1): 49)
[9] Wu K, Jung W S, Byeon J W.In-situ monitoring of pitting corrosion on vertically positioned 304 stainless steel by analyzing acoustic-emission energy parameter[J]. Corros. Sci., 2016, 15(2016): 8
[10] Toor I U H. Mott-schottky analysis of passive films on Si containing stainless steel alloys[J]. J. Electrochem. Soc., 2011, 158(11): C391
[11] Freire L, Nóvoa X R, Pena G, et al.On the corrosion mechanism of AISI 204Cu stainless steel in chlorinated alkaline media[J]. Corros. Sci., 2008, 50(11): 3205
[12] Beverskog B, Puigdomenech I.Revised pourbaix diagrams for chromium at 25~300 ℃[J]. Corros. Sci., 1997, 39(1): 43
[13] Bautista A, Blanco G, Velasco F, et al.Changes in the passive layer of corrugated austenitic stainless steel of low nickel content due to exposure to simulated pore solutions[J]. Corros. Sci., 2009, 51(4): 785
[14] Le Xuan Q, Rondot B, Da Cunha Belo M. Relationship between the electronic structure of passive films and the susceptibility to pitting corrosion of stainless steels[J]. Ann. Chim.-Sci. Mater., 1998, 23(4): 607
[15] Blanco G, Bautista A, Takenouti H.EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions[J]. Cem. Concr. Compos., 2006, 28(3): 212
[16] Rondelli G, Torricelli P, Fini M, et al.In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedicapplications[J]. Biomaterials, 2005, 26(7): 739
[17] Abreu C M, Cristóbal M J, Losada R, et al.Long-term behaviour of AISI 304L passive layer in chloride containing medium[J]. Electrochem. Acta, 2006, 51(8/9): 1881
[18] Sahoo G, Balasubramaniam R.On the corrosion behaviour of phosphoric irons in simulated concrete pore solution[J]. Corros. Sci., 2008, 50(1): 131
[19] Schmuki P, Virtanen S, Isaacs H S, et al.Electrochemical behavior of Cr2O3/Fe2O3 artificial passive films studied by in situ XANES[J]. J. Electrochem. Soc., 1998, 145(3): 791
[20] Sugimoto K, Seto M, Tanaka S, et al.Corrosion resistance of artificial passivation films of Fe2O3-Cr2O3-NiO formed by metalorganic chemical vapor deposition[J]. J. Electrochem. Soc., 1993, 140(6): 1586
[21] Ningshen S, KamachiMudali U, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49(2): 481
[22] Ge H H, Xu X M, Zhao L, et al.Semiconducting behavior of passive film formed on stainless steel in borate buffer solution containing sulfide[J]. J. Appl. Electrochem., 2011, 41(5): 519
[23] Taveira L V, Montemor M F, Belo M D, et al.Influence of incorporated Mo and Nb on the Mott-Schottky behaviour of anodic films formed on AISI 304L[J]. Corros. Sci., 2010, 52(9): 2813
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[7] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[8] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[12] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.