Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 526-532    DOI: 10.11902/1005.4537.2016.206
  研究报告 本期目录 | 过刊浏览 |
Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响
周霄骋, 崔巧棋, 贾静焕, 刘智勇(), 杜翠薇
北京科技大学腐蚀与防护中心 北京 100083
Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution
Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU(), Cuiwei DU
Corrosion & Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(4440 KB)   HTML
摘要: 

采用动电位极化曲线、EIS、SSRT和U形弯试样浸泡实验研究了Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响。结果表明,316L不锈钢在碱性NaCl/Na2S环境中表现出一定的应力腐蚀敏感性,Cl-与S2-对316L不锈钢腐蚀过程存在竞争作用,导致电化学阻抗出现极值。随着Cl-浓度增大,氢致韧性作用能够在一定程度上增大316L不锈钢的延伸率,降低塑性损失,但对其断裂应力影响不大。

关键词 316L不锈钢碱性溶液Cl-S2-应力腐蚀开裂    
Abstract

The effect of Cl- concentration on stress corrosion cracking (SCC) in alkaline solutions of NaCl/Na2S was assessed by means of slow strain rate test (SSRT) and U-type bending immersion test, as well as measurements of potentiodynamic polarization, electrochemical impedance spectra (EIS). 316L stainless steel exhibits SCC susceptibility to a certain extent in alkaline NaCl/Na2S solution, while Cl- and S2- have a competitive effect on the corrosion process of 316L stainless steel, resulting in the extreme value of electrochemical impedance. With the increasing of Cl- concentration, the effect of hydrogen-induced plasticity (HIP) can increase the elongation to a certain extent and decrease the plastic loss of 316L stainless steel, but it has little effect on the tensile strength of 316L stainless steel.

Key words316L stainless steel    alkaline solution    Cl-    S2-    stress corrosion cracking
收稿日期: 2016-10-23     
ZTFLH:  TG178  
基金资助:国家自然科学基金 (51471034和51771028)
作者简介:

作者简介 周霄骋,女,1991年生,硕士生

引用本文:

周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 526-532.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.206      或      https://www.jcscp.org/CN/Y2017/V37/I6/526

图1  慢拉伸试样和U型弯试样的形状与尺寸
图2  316L不锈钢在不同Cl-浓度NaCl/Na2S溶液中的Nyquist图
图3  等效拟合电路
图4  电荷转移电阻Rct和腐蚀产物电阻Rf随Cl-浓度变化的趋势
图5  316L不锈钢在不同Cl-浓度NaCl/Na2S溶液中的动电位极化曲线
图6  316L不锈钢在不同Cl-浓度的NaCl/Na2S溶液中Eb和Imain拟合结果
图7  316L不锈钢在不同Cl-浓度NaCl/Na2S溶液中的SSRT曲线
图8  316L不锈钢在不同Cl-浓度的NaCl/Na2S溶液中的延伸率及断面收缩率损失
图9  316L不锈钢在不同Cl-浓度的NaCl/Na2S溶液中的SSRT断口形貌
图10  316L不锈钢在不同Cl-浓度NaCl/Na2S溶液中浸泡30 d的微观腐蚀形貌
图11  S2-和Cl-对316L不锈钢表面膜破坏作用示意图
[1] Li J, Qi Y.Corrosion and protection of the pretreatment system of continuous catalytic reforming unit[J]. Corros. Prot. Petro. Ind., 2014, 31: 27(李佳, 亓越. 连续催化重整装置预处理系统的腐蚀与防护[J]. 石油化工腐蚀与防护, 2014, 31: 27)
[2] Xing X J, Yang M H, Jiang Y J, et al.Summary of high-chlorine crude oil processing[J]. Petro. Ref. Eng., 2015, 45: 7(邢献杰, 杨明辉, 江煜杰等. 高氯原油加工情况总结[J]. 炼油技术与工程, 2015, 45: 7)
[3] Sun L, Hou Y H, Yang X, et al.Effect of chlorine ion and sulfur ion on corrosion of 316L stainless steel and monel alloy in oil refining process[J]. Surf. Technol., 2015, 44: 41(孙亮, 侯艳宏, 杨席等. 炼油加工过程中氯离子与硫离子对316L不锈钢和Monel合金腐蚀的影响[J]. 表面技术, 2015, 44: 41)
[4] Zhang J Z, Jiang J Q, Liu W Y, et al.Electrochemical corrosion in refinery and anticorrosion technology research[J]. Henan Chem. Ind., 2011, 28: 13(张金钟, 蒋吉强, 刘万元等. 炼油厂电化学腐蚀以及防腐工艺的研究现状[J]. 河南化工, 2011, 28: 13)
[5] Du Y X, Zhang L.A review on the anti-corrosion technologies in refinery[J]. Corros. Prot., 2005, 26: 82(杜荣熙, 张林. 炼油厂工艺防腐蚀技术分析[J]. 腐蚀与防护, 2005, 26: 82)
[6] Yu C Y.Understanding and consideration of stress corrosion induced crack occurred in petrochemical stainless steel equipment[J]. Proc. Equip. Pipeline, 2012, 49: 58(余存烨. 对石化设备不锈钢应力腐蚀开裂的认识与反思[J]. 化工设备与管道, 2012, 49: 58)
[7] Hao W K, Liu Z Y, Du C W, et al.Stress corrosion cracking behavior of 16Mn steel and heat-affected zone in alkaline sulfide with different concentrations[J]. CIESC J., 2013, 64: 4143(郝文魁, 刘智勇, 杜翠薇等. 不同硫化物浓度碱性溶液中16Mn钢及热影响区应力腐蚀行为[J]. 化工学报, 2013, 64: 4143)
[8] Meng G Z, Li Y, Shao Y W, et al.Effect of Cl- on the properties of the passive films formed on 316L stainless steel in acidic solution[J]. J. Mater. Sci. Technol., 2014, 30: 253
[9] He W, Knudsen O ?, Diplas S.Corrosion of stainless steel 316L in simulated formation water environment with CO2-H2S-Cl-[J]. Corros. Sci., 2009, 51: 2811
[10] Nishimura R, Maeda Y.SCC evaluation of type 304 and 316 austenitic stainless steels in acidic chloride solutions using the slow strain rate technique[J]. Corros. Sci., 2004, 46: 769
[11] Boissy C, Alemany-Dumont C, Normand B.EIS evaluation of steady-state characteristic of 316L stainless steel passive film grown in acidic solution[J]. Electrochem. Commun., 2013, 26: 10
[12] Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study[J]. Electrochim. Acta, 2010, 55: 6174
[13] Andrade C, Keddam M, Nóvoa X R, et al.Electrochemical behaviour of steel rebars in concrete: Influence of environmental factors and cement chemistry[J]. Electrochim. Acta, 2001, 46: 3905
[14] Díaz B, Joiret S, Keddam M.Passivity of iron in red mud’s water solutions[J]. Electrochim. Acta, 2004, 49: 3039
[15] Hardie D, Charles E A, Lopez A H.Hydrogen embrittlement of high strength pipeline steels[J]. Corros. Sci., 2006, 48: 4378
[16] Liu Z Y, Wang X Z, Du C W, et al.Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments[J]. Mater. Sci. Eng., 2016, A658: 348
[17] Jia J H, Liu Z Y, Du C W, et al.Stress corrosion behavior of 316L stainless steel in high-pH alkaline sulphide solution[J]. Surf. Technol., 2015, 44(3): 36(贾静焕, 刘智勇, 杜翠薇等. 316L不锈钢在高pH碱性硫化物环境中的应力腐蚀行为[J]. 表面技术, 2015, 44(3): 36)
[18] Yang H Y, Chen J J, Cao C N, et al.Study on corrosion and inhibition mechanism in H2S aqueous solutions. III. electrochemical behavior of carbon steel in the different pH solutions containing H2S[J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 97(杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究[J]. 中国腐蚀与防护学报, 2000, 20(2): 97)
[19] Kolotytkin Y M, Laxorenko R M, Sokolova L A.Spectroscopic studies of water adsorption on iron group metals[J]. J. Electroanal. Chem. Interface Electrochem., 1987, 228: 301
[20] Hoar T P, Jacon W R.Breakdown of passivity of stainless steel by halide ions[J]. Nature, 1967, 216: 1299
[21] Hao W K, Liu Z Y, Ma Y, et al.Stress corrosion cracking behavior of 16Mn steel and heat-affected zone in alkaline sulfide with different pH value[J]. Mater. Eng., 2015, 43(3): 28(郝文魁, 刘智勇, 马岩等. 不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J]. 材料工程, 2015, 43(3): 28)
[22] Miresmaeili R, Liu L J, Kanayama H. A possible explanation for the contradictory results of hydrogen effects on macroscopic deformation [J]. Int. J. Pressure Vessels Pip., 2012, 99/100: 34
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 邓培昌, 钟杰, 王坤, 胡杰珍, 李子运, 岑楚欣, 沈小涵. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[4] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] 田雪凯, 王海龙, 程旭东, 孙晓燕. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[12] 王玉昆, 刘静, 胡骞, 黄峰. S2-对A710钢在NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[13] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[14] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[15] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.