Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 540-546    DOI: 10.11902/1005.4537.2016.204
  研究报告 本期目录 | 过刊浏览 |
TA2在LiBr溶液中的初期空化腐蚀行为
杨颖1, 林翠1,2(), 赵晓斌1, 张翼飞1
1 南昌航空大学 材料科学与工程学院 南昌 330063
2 南昌航空大学 腐蚀与防护江西省高校重点实验室 南昌 330063
Initial Stage Cavitation-corrosion of TA2 in Aqueous LiBr Solution
Ying YANG1, Cui LIN1,2(), Xiaobin ZHAO1, Yifei ZHANG1
1 School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 Corrsion and Protection of Jiangxi Province Key Laboratory of College and University, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(4709 KB)   HTML
摘要: 

利用粗糙度轮廓仪、SEM、三维视频显微镜和电化学测试技术研究了纯Ti (TA2) 在LiBr溶液中的空化腐蚀过程,探讨了腐蚀与空化的协同作用。结果表明,材料受到空化冲击作用后,表面产生不均匀的塑性变形。随着空化腐蚀的进行,TA2表面塑性变形程度继续增大,晶界处位错密度的增加使晶界处应力更加集中,进而导致材料表面晶界处发生轻微的脱落,局部产生裂纹,表面粗糙度Rq呈线性增长。随后裂纹沿着晶界或向晶粒内部继续扩展,材料脱落逐渐加剧,同时材料表面钝化膜因力学作用受到破坏,露出新鲜的基体,促进了LiBr的腐蚀作用。空化与腐蚀的协同作用加速了腐蚀坑的加深与扩展,但腐蚀坑周边的材料脱落降低了材料的凹凸程度,材料表面粗糙度的增长速度减缓,直至最后进入稳定阶段。

关键词 TA2LiBr溶液空化腐蚀协同作用    
Abstract

The evolution of cavitation-corrosion of pure titanium TA2 in LiBr solution was investigated by roughness profiler, scanning electronic microscope (SEM) and three-dimensional video microscope, while the combined action of corrosion and cavitation was examined by electrochemical measurement technologies. Results show that there was uneven plastic deformation firstly under the action of cavitation, and as the cavitation test continued, the degree of plastic deformation and the dislocation density at grain boundaries increased, causing the concentration of stress and slight falling off of materials of grain boundaries. Cracks were generated locally, while the surface roughness value (Rq) increased linearly with time. Then cracks propagated along grain boundaries or through grains, then the falling of material increased. At the same time, the passive film on the surface was easily attacked and therewith the fresh titanium substrate was exposed, which promoted the corrosive effect of lithium bromide. The synergistic effect of mechanics and corrosion may accelerate the deepening and expending of corrosion pits, eventually the materials on the periphery of corrosion pits fell off, and thereby the degree of surface concave and convex became smaller, the growth rate of Rq decreased, at the end, the value of Rq tended to stabilize.

Key wordsTA2    lithium bromide solution    cavitation corrosion    synergistic effect
收稿日期: 2016-10-18     
ZTFLH:  TG172.9  
基金资助:国家自然科学基金 (51361024)
作者简介:

作者简介 杨颖,女,1992年生,硕士生

引用本文:

杨颖, 林翠, 赵晓斌, 张翼飞. TA2在LiBr溶液中的初期空化腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
Ying YANG, Cui LIN, Xiaobin ZHAO, Yifei ZHANG. Initial Stage Cavitation-corrosion of TA2 in Aqueous LiBr Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 540-546.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.204      或      https://www.jcscp.org/CN/Y2017/V37/I6/540

图1  TA2的微观组织结构
图2  模拟空化腐蚀系统装置图
图3  TA2空化腐蚀过程中Rq和平均空化腐蚀深度的变化
图4  空化腐蚀过程中TA2表面3D轮廓的变化
图5  TA2空化腐蚀表面的形貌特征
图6  空化腐蚀对微观组织结构的影响
图7  TA2在55%LiBr溶液和纯水中的开路电位曲线
图8  TA2在LiBr溶液和纯水中的动电位极化曲线
图9  TA2空化腐蚀900 min后的表面轮廓
Solution Condition Ecorr / mV Icorr / μAcm-2 Ip / μAcm-2 Passive region (Etp-Ep) / mV
LiBr Static -379.9 2.241 11.349 833.7
Cavitation -518.7 3.185 34.595 730.2
Pure Water Static -20.4 2.043 18.233 1303.6
Cavitation -131.7 2.348 21.736 1045.3
表1  TA2在LiBr溶液和纯水中的电化学参数
[1] He J M.Background of the desalination of sea water in China[J]. Power Stn. Auxiliary Equip., 2002, (2): 35(何季民. 我国海水淡化事业基本情况[J]. 电站辅机, 2002, (2): 35)
[2] Mandani F, Ettouney H, El-Dessouky H.LiBr-H2O absorption heat pump for single-effect evaporation desalination process[J]. Desalination, 2000, 128: 161
[3] Wang Y Q, Lior N.Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr-H2O absorption cycle-Part 1: System configuration and mathematical model[J]. Energy Conv. Manag., 2011, 52: 220
[4] Jiang C Y, Zhang G.Technology research on low-phosphorus electroless plating of titanium alloy TC4[J]. J. Shenyang Ligong Univ., 2010, 29(6): 59(蒋昌宇, 张罡. TC4钛合金低磷化学镀工艺研究[J]. 沈阳理工大学学报, 2010, 29(6): 59)
[5] Liu W, Zheng Y G, Yao Z M, et al.Research progress on cavitation erosion of metallic materials[J]. J. Chin. Soc. Corros. Prot., 2001, 21(4): 250(柳伟, 郑玉贵, 姚治铭等. 金属材料的空蚀研究进展[J]. 中国腐蚀与防护学报, 2001, 21(4): 250)
[6] Li Y J.Study on mechanism of surface topograhpy effects on generation of cavitation erosion [D]. Beijing: Tsinghua University, 2009(李永健. 空蚀发生过程中表面形貌作用机理研究 [D]. 北京: 清华大学, 2009)
[7] Guan X.Cavitation erosion behavior of titanium and Ti-6Al-4V alloy [D]. Tianjin: Tianjin University, 2010(关昕. 钛及Ti-6Al-4V合金的空蚀行为研究 [D]. 天津: 天津大学, 2010)
[8] Man H C, Cui Z D, Yue T M, et al.Cavitation erosion behavior of laser gas nitrided Ti and Ti6Al4V alloy[J]. Mater. Sci. Eng., 2003, A355: 167
[9] Zhang Y F, Lin C, Du N, et al.Cavitation corrosion behavior of TC4 titanium alloy in lithium bromide solution[J]. Corros. Prot., 2015, 36: 522(张翼飞, 林翠, 杜楠等. TC4钛合金在溴化锂水溶液中的空蚀行为[J]. 腐蚀与防护, 2015, 36: 522)
[10] Jiang X X, Li S Z, Li S.Corrosive Wear of Metals [M]. Beijing: Chemical Industry Press, 2003: 196(姜晓霞, 李诗卓, 李曙. 金属的腐蚀磨损 [M]. 北京: 化学工业出版社, 2003: 196)
[11] Chen D R.Cavitation and cavitation erosion[J]. China Basic Sci., 2010, 12(6): 3(陈大融. 空化与空蚀研究[J]. 中国基础科学, 2010, 12(6): 3)
[12] Zhang X L, Sun D B, Yu H Y, et al.Effect of corrosion on cavitation damage process[J]. Corros. Sci. Prot. Technol., 2001, 13: 162(张秀丽, 孙冬柏, 俞宏英等. 金属材料空蚀过程中的腐蚀作用[J]. 腐蚀科学与防护技术, 2001, 13: 162)
[13] Shi Y T.The research on the resistance of the cavitation performance of pure titanium and TC4 titanium alloy [D]. Tianjin: Tianjin University, 2012(史烨婷. 纯钛及TC4钛合金抗空蚀性能的研究 [D]. 天津: 天津大学, 2012)
[14] Kwok C T, Cheng F T, Man H C.Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5%NaClsolution[J]. Mater. Sci. Eng., 2000, A290: 145
[15] ASTM G32-2006. Standard Test Method for Cavitation Erosion Using Vibratory Apparatus[S]
[16] Kwok C T, Man H C, Leung L K et al. Effect of temperature, pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel[J]. Wear, 1997, 211: 84
[17] Fernández-Domene R M, Blasco-Tamarit E, García-García D M, et al. Cavitation corrosion and repassivation kinetics of titanium in a heavy brine LiBr solution evaluated by using electrochemical techniques and confocal laser scanning microscopy[J]. Electrochim. Acta, 2011, 58: 264
[18] Luo S Z, Zheng Y G, Yao Z M, et al.Cavitation corrosion behavior of 1Cr18Mn14N stainless steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2004, 24: 350(骆素珍, 郑玉贵, 姚治铭等. 1Cr18Mn14N不锈钢在HCl溶液中的空蚀行为[J]. 中国腐蚀与防护学报, 2004, 24: 350)
[19] Jiang S L, Zheng Y G, Luo S Z, et al.Corrosion behavior of type 316L stainless steel before and after incubation period of cavitation erosion[J]. Corros. Prot., 2004, 25: 139(姜胜利, 郑玉贵, 骆素珍等. 空蚀孕育期前后316L不锈钢的腐蚀行为[J]. 腐蚀与防护, 2004, 25: 139)
[20] Bai X, Sun D B, Yu H Y, et al.Relationship between electrochemical and dynamic performances of Fe-Cr alloys during cavitation damage[J]. Chin. J. Nonferrous Met., 2001, 11(suppl. 2): 285(白霞, 孙冬柏, 俞宏英等. 铁铬合金空蚀过程中电化学力学性能相关性[J]. 中国有色金属学报, 2001, 11(增刊2): 285)
[21] Liu Z E.Materials Science and Engineering [M]. Xi'an: Northwestern Polytechnical University Press, 2007(刘智恩. 材料科学基础 [M]. 西安: 西北工业大学出版社, 2007)
[1] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[2] 林翠,赵晓斌,张翼飞. 金属材料的空化腐蚀行为及影响因素研究进展[J]. 中国腐蚀与防护学报, 2016, 36(1): 11-19.
[3] 张漫路,赵景茂. 缓蚀剂协同效应与协同机理的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(1): 1-10.
[4] 杜楠,舒伟发,王春霞,王帅星,陈庆龙. 一种组合添加剂在碱性无氰镀锌中的作用[J]. 中国腐蚀与防护学报, 2012, 32(3): 251-255.
[5] 李松梅 王彦卿 刘建华 梁 馨. 氧化亚铁硫杆菌和氧化硫硫杆菌的协同作用对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 182-186.
[6] 舒勇华; 王福会; 吴维tao . NaCl盐膜和水蒸气对纯Cr腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2000, 20(2): 88-96 .
[7] 张大全; 徐群杰; 陆柱 . 苯并三唑和咪唑分子内缓蚀协同作用的研究[J]. 中国腐蚀与防护学报, 1999, 19(5): 280-284 .
[8] 蔡健平;郑逸苹;刘寿荣. 氯化物、硫污染物对碳钢大气腐蚀的协同作用[J]. 中国腐蚀与防护学报, 1996, 16(4): 303-306.