Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 101-109    DOI: 10.11902/1005.4537.2016.202
  研究报告 本期目录 | 过刊浏览 |
超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为
毛成亮1,肖葵1,2(),董超芳1,2,吴俊升1,2,颜利丹1,蒋立1
1 北京科技大学腐蚀与防护中心 北京 100083
2 北京科技大学 腐蚀与防护教育部重点实验室 北京 100083
Corrosion Behavior of Extra Deep Drawing Cold Rolled Sheet in Stimulative Ocean-atmosphere Environment
Chengliang MAO1,Kui XIAO1,2(),Chaofang DONG1,2,Junsheng WU1,2,Lidan YAN1,Li JIANG1
1 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3324 KB)   HTML
摘要: 

根据万宁海洋大气试验站近3 a的大气环境数据,采用当量折算法,计算中性盐雾实验模拟万宁海洋大气环境所需的折算周期。以超深冲压冷轧板DC06和Q235钢为实验材料,研究二者在中性盐雾实验中的腐蚀行为,并通过灰色关联度法,定量研究中性盐雾加速实验和万宁海洋大气户外暴露实验的相关性。结果表明:DC06和Q235钢中性盐雾实验腐蚀动力学曲线拟合后均符合幂函数规律;DC06和Q235钢经计算周期 (528 ha-1) 和常用周期 (480 ha-1) 中性盐雾实验与万宁户外大气暴露实验的灰色关联度均大于0.6,符合室内外动力学一致性原则;DC06和Q235钢两种材料在折算周期 (528 ha-1) 下的灰色关联度 (0.6761,0.7383) 大于常用周期 (0.6029,0.6050)。

关键词 超深冲压冷轧板DC06当量折算加速实验灰色关联度    
Abstract

The conversion period for the corrosion data of steels acquired respectively by the outerdoor exposure test and the indoor neutral salt spray test, which aims to simulate the corrosivity of the marine atmospheric environment at Wanning, was calculated by means of the equivalent conversion method, while taking the real marine atmospheric environmental data over the past three years at Wanning area into account. Then the corrosion behavior of an extra deep drawing cold rolled sheet DC06 and a carbon steel Q235 was comparatively studied through neutral salt spray test for desired conversion periods. In the meanwhile, the correlation between the results of the indoor neutral salt spray accelerated test and the outdoor air exposure test at Wanning is quantitatively studied by the grey correlation degree method. The results show that the corrosion kinetics curves of DC06 and Q235 by neutral salt spray test are in accordance with the power function law. For DC06 and Q235, their relevant results of neutral salt spray test for the conversion period (528 ha-1) and the common period (480 ha-1) respectively showed gray correlation degrees greater than 0.6 with those of the outdoor atmospheric exposure test at Wanning,indicating that the corrosion dynamics results measured indoor and outdoor respectively are of consistency. It is noted that the grey correlation degrees for the outdoor test results with those of indoor test for the conver sion period are higher than those for the common period.

Key wordsextra deep drawing cold rolled sheet    DC06    equivalent conversion    accelerated test    rey relational degree
收稿日期: 2016-10-14     

引用本文:

毛成亮,肖葵,董超芳,吴俊升,颜利丹,蒋立. 超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 101-109.
Chengliang MAO, Kui XIAO, Chaofang DONG, Junsheng WU, Lidan YAN, Li JIANG. Corrosion Behavior of Extra Deep Drawing Cold Rolled Sheet in Stimulative Ocean-atmosphere Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 101-109.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.202      或      https://www.jcscp.org/CN/Y2017/V37/I2/101

Material RH / % Temperature / ℃
20 25 30 35
Steel 70 0.13862 0.02049 0.24066 0.34024
80 0.12590 0.14173 0.44544 0.59702
90 0.08226 0.32299 0.57282 1.00000
表1  潮湿空气与标准潮湿空气的折算系数
Material Concentration / of NaCl α
Steel 0.5% 0.485
1.7% 0.417
3.5% 0.320
7.0% 0.310
表2  不同浓度NaCl与水介质的折算系数
Year Temperature / ℃ Precipitation / h Fog / h Humidity / h
RH=70% RH=80% RH=90%
2012 20 162.8 170.5 --- 1217.7 1099.7
25 146.4 167.4 --- 2482.1 545.4
30 82.5 20.3 --- 1545.5 ---
2013 20 65.7 98.1 528.5 601.4 639.4
25 233.2 204.1 --- 1531.3 1448.5
30 68.8 79.5 --- 1491.1 ---
2014 20 90.3 119.6 --- 1171.2 538.6
25 168.7 149.5 --- 1998.3 1045.1
30 89.8 20.9 --- 1542.5 ---
表3  万宁实验站降雨、雾及温湿度累积谱
Steel C S Mn Si Ti P Fe
Q235 0.1900 0.0042 0.39 0.26 --- 0.0076 Bal.
DC06 0.0053 0.0045 0.22 --- 0.12 0.0190 Bal.
表4  Q235和 DC06钢主要化学成分
图1  Q235和DC06钢不同时间中性盐雾实验后腐蚀失重曲线
Steel A n R2
Q235 1.59262 0.94827 0.97407
DC06 2.86327 0.88896 0.99060
表5  拟合曲线参数
图2  Q235钢不同周期盐雾实验后腐蚀微观形貌
图3  DC06钢经不同周期盐雾实验后腐蚀微观形貌
图4  Q235和DC06钢不同时间中性盐雾实验后的XRD谱
图5  Q235和DC06钢不同时间中性盐雾实验后的极化曲线
Test 0.5 a (264 h) 1 a (528 h) 1.5 a (792 h) 2 a (1056 h) 2.5 a (1320 h) 3 a (1584 h)
Exposure x0 371.43 571.12 743.56 878.17 1008.62 1129.47
x2 336.30 566.64 768.87 954.76 1129.37 1295.50
Accelerated x1 414.98 629.88 869.99 1099.47 1367.46 1828.38
x3 439.77 825.00 1000.70 1365.57 1679.35 2049.41
表6  Q235和DC06钢室内外实验腐蚀失重统计表 (528 ha-1)
Test 0.5 a (240 h) 1 a (480 h) 1.5 a (720 h) 2 a (960 h) 2.5 a (1200 h) 3 a (1440 h)
Exposure x0 371.43 571.12 743.56 878.17 1008.62 1129.47
x2 336.30 566.64 768.87 954.76 1129.37 1295.50
Accelerated x1 259.10 550.42 751.79 1023.04 1175.93 1577.78
x3 313.94 616.87 940.65 1243.32 1786.95 1952.61
表7  Q235和DC06钢室内外实验腐蚀失重统计表 (480 ha-1)
Test 0.5 a (264 h) 1 a (528 h) 1.5 a (792 h) 2 a (1056 h) 2.5 a (1320 h) 3 a (1584 h)
Exposure Y0 1.0000 1.5376 2.0019 2.3643 2.7155 3.0409
Y2 1.0000 1.6849 2.2863 2.8390 3.3582 3.8522
Accelerated Y1 1.0000 1.5179 2.0965 2.6495 3.2952 4.4059
Y3 1.0000 1.8760 2.2755 3.1052 3.8187 4.6602
表8  Q235和DC06钢室内外实验腐蚀失重预处理结果 (528 ha-1)
Test 0.5 a (240 h) 1 a (480 h) 1.5 a (720 h) 2 a (960 h) 2.5 a (1200 h) 3 a (1440 h)
Exposure Y0 1.0000 1.5376 2.0019 2.3643 2.7155 3.0409
Y2 1.0000 1.6849 2.2863 2.8390 3.3582 3.8522
Accelerated Y1 1.0000 2.1244 2.9015 3.9484 4.5385 6.0895
Y3 1.0000 1.9649 2.9963 3.9604 5.6920 6.2197
表9  Q235和DC06钢室内外实验腐蚀失重预处理结果 (480 ha-1)
Steel Time 0.5 a (264 h) 1 a (528 h) 1.5 a (792 h) 2 a (1056 h) 2.5 a (1320 h) 3 a (1584 h)
Q235 01 0 0.1977 0.0946 0.2852 0.5797 1.3651
DC06 02 0 0.1911 0.0108 0.2662 0.4605 0.8080
表10  Q235和DC06钢室内外实验腐蚀失重的绝对差 (528 ha-1)
Steel Time 0.5 a (240 h) 1 a (480 h) 1.5 a (720 h) 2 a (960 h) 2.5 a (1200 h) 3 a (1440 h)
Q235 01 0 0.5867 0.8997 1.5841 1.8230 3.0485
DC06 02 0 0.2800 0.7100 1.1214 2.3338 2.3675
表11  Q235和DC06钢室内外实验原始腐蚀数据 (480 ha-1)
Cycle time γ
Q235 steel (528 ha-1) 0.7383
DC06 steel (528 ha-1) 0.6761
Q235 steel (480 ha-1) 0.6050
DC06 steel (480 ha-1) 0.6029
表12  室内外实验的灰关联度
[1] Kang H J.Research and development of extra-deep drawing DC06 [D]. Shenyang: Northeastern University, 2009
[1] (康海军. 汽车用超深冲钢DC06的研制开发 [D]. 沈阳: 东北大学, 2009)
[2] Li G Y, Zhou J Z.Development and application of high grade auto sheet steels[J]. J. Iron Steel Res., 2012, 24(suppl.1): 1
[2] (李光瀛, 周积智. 高等级汽车板的开发与应用[J]. 钢铁研究学报, 2012, 24(增刊1): 1)
[3] Yang X H, Jin P.Compile of aircraft operation environment spectrum[J]. Equip. Environ. Eng., 2010, 7(6): 99
[3] (杨晓华, 金平. 飞机使用环境谱的编制[J]. 装备环境工程, 2010, 7(6): 99)
[4] Zhang X J, Shu D X, Chen J Q.Study on the weather and corrosion characteristics of Wanning exposure site[J]. Equip. Environ. Eng., 2005, 2(4): 73
[4] (张先勇, 舒德学, 陈建琼. 海南万宁试验站大气环境及腐蚀特征研究[J]. 装备环境工程, 2005, 2(4): 73)
[5] Bai Z H, Huang Y H, Li X G, et al.Environmental corrosion in industrial-marine atmosphere at Qingdao of 7050 Al-alloy anodized in boric- and sulfuric-acid electrolyte[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 580
[5] (白子恒, 黄运华, 李晓刚等. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36: 580)
[6] Zhang D D, Zhao C Y, Wang C, et al.Atmospheric aerosols corrosion[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 91
[6] (张丹丹, 赵春英, 汪川等. 大气气溶胶腐蚀[J]. 中国腐蚀与防护学报, 2015, 35: 91)
[7] Tang Q H, Li J N, Dai H.Contrast research on corrosivity of Wanning seaside and Xisha Islands atmosphere[J]. Equip. Environ. Eng., 2010, 7(6): 1
[7] (唐其环, 李军念, 代红. 万宁滨海与西沙群岛大气腐蚀性对比研究[J]. 装备环境工程, 2010, 7(6): 1)
[8] Liu C C, Lu G F, Zhang J K, et al.Differences between environment spectrums of 2A12 and 30CrMnSiA in the same ocean atmospheric environment[J]. Corros. Prot., 2015, 36: 609
[8] (刘成臣, 鲁国富, 张金奎等. 2A12与30CrMnSiA在相同海洋大气环境中的加速环境谱差异[J]. 腐蚀与防护, 2015, 36: 609)
[9] Yu Q C, Wang Z Y, Wang C.Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative condition[J]. Acta Metall. Sin., 2010, 46: 1133
[9] (于全成, 王振尧, 汪川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为[J]. 金属学报, 2010, 46: 1133)
[10] Liu G C, Dong J H, Han E-H, et al.Progress in research on rust layer of weathering steel[J]. Corros. Sci. Prot. Technol., 2006, 18: 268
[10] (刘国超, 董俊华, 韩恩厚等. 耐候钢锈层研究进展[J]. 腐蚀科学与防护技术, 2006, 18: 268)
[11] Ma Y T, Li Y, Wang F H.Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51: 997
[12] Ma Y T, Li Y, Wang F H.The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112: 844
[13] Evans V R.The Corrosion and Oxidation of Metals: Second Supplementary Volume[M]. London, England: Edward Arnold, 1976
[14] Matsushima I, Ueno T.On the protective nature of atmosph rust on low-alloy steel[J]. Corros. Sci., 1971, 11: 129
[15] Moutarlier V, Gigandet M P, Normand B, et al.EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species[J]. Corros. Sci., 2005, 47: 937
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 冯亚丽,白子恒,陈利红,魏丹,张东玖,姚琼,吴俊升,董超芳,肖葵. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 519-526.
[3] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[4] 胡建文 高瑾 李晓刚 杜翠女. 紫外光对丙烯酸聚氨酯清漆的老化影响规律研究[J]. 中国腐蚀与防护学报, 2009, 29(5): 371-375.