Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 535-542    DOI: 10.11902/1005.4537.2016.190
  研究报告 本期目录 | 过刊浏览 |
模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响
张天翼,吴俊升(),郭海龙,李晓刚
北京科技大学新材料技术研究院 腐蚀与防护中心 北京 100083
Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater
Tianyi ZHANG,Junsheng WU(),Hailong GUO,Xiaogang LI
Corrosion and Protection Center, Institute of Advanced Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(802 KB)   HTML
摘要: 

在含有不同浓度NaHSO3的模拟海水溶液中系统考察了2205双相不锈钢的腐蚀行为。利用动电位极化曲线和电化学阻抗谱测试,研究模拟海水中不同浓度HSO3-对2205双相不锈钢腐蚀行为的影响。通过Mott-Schottky和XPS测试,分析了2205不锈钢在不同浓度HSO3-模拟海水溶液中钝化膜的缺陷浓度和成分。结果表明,模拟海水溶液中HSO3-的存在会提高2205不锈钢钝化膜中金属氧化物的含量。在含有0.01 mol/L HSO3-的模拟海水溶液中,2205双相不锈钢表现出较差的耐蚀性,其表面钝化膜中的缺陷浓度计算结果也与电化学测试结果相吻合。主要是由于HSO3-在溶液中极易被氧化为HSO4-,电离出H+,会对2205不锈钢钝化膜产生破坏作用;而当模拟海水中HSO3-浓度低于0.01 mol/L时,材料阻抗呈上升趋势,HSO3-会在2205不锈钢表面和Cl-产生竞争吸附,阻碍Cl-在不锈钢表面的吸附,从而减少点蚀发生的可能。

关键词 2205双相不锈钢钝化膜缺陷模拟海水竞争吸附    
Abstract

Corrosion behavior of 2205 duplex stainless steel in simulated seawater containing different concentration of NaHSO3 has been systemically investigated by means of potentiodynamic polarization and electrochemical impedance spectrum (EIS) measurements. While the defects and the compositions of the formed passive films on the steel were characterized by Mott-Schottky and XPS respectively. The results demonstrate that the existence of HSO3- in the simulated seawater contributes to the increase of metal oxide content in the passive film formed on 2205 stainless steel. In the simulated seawater containing 0.01 mol/L HSO3-, 2205 duplex stainless steel presents the worst corrosion resistant performance, correspondingly the calculated defect concentration for the formed passive film is consistent to the electrochemical test results. The oxidation of HSO3- induces the formation of HSO4- in aqueous solution, which will give rise to the releasing of hydrogen ions, leading to the increase of acidity of the solution and thus induces the damage of the passive film on 2205 stainless steel. However, when the concentration of HSO3- in simulated seawater is less than 0.01 mol/L, the corrosion resistance of the steel will rise again. This is because the competitive adsorption between HSO3- and Cl- on the 2205 stainless steel surface can inhibit the adsorption of Cl-, which then results in the decline of the pitting corrosion probability.

Key words2205 duplex stainless steel    passive film    defect    simulated seawater    competitiveadsorption
    
基金资助:国家自然科学基金项目 (51271031),国家重点基础研究发展计划项目 (2014CB643300) 和国家科技基础条件平台项目 (2005DKA10400) 资助

引用本文:

张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
Tianyi ZHANG, Junsheng WU, Hailong GUO, Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 535-542.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.190      或      https://www.jcscp.org/CN/Y2016/V36/I6/535

图1  2205不锈钢试样在模拟海水溶液中的动电位极化曲线和NaHSO3浓度与不锈钢点蚀电位的关系图
图2  2205不锈钢在不同浓度HSO3-模拟海水溶液中的电化学阻抗谱及相应的等效电路
Concentration of NaHSO3 / molL-1 Rs / Ω CPEdl / F ndl Rct / Ω CPEfilm / F nfilm Rfilm / Ω
0 5.805 5.06×10-5 0.8924 2.34×105 1.68×10-5 0.7992 2.20×105
0.005 5.597 5.97×10-5 0.8798 3.05×104 2.10×10-3 1 3.77×104
0.01 6.235 6.19×10-5 0.8587 2.50×104 3.36×10-3 1 1.82×104
0.05 6.106 6.34×10-5 0.8976 6.20×104 1.90×10-3 0.8670 2.23×104
0.1 5.456 5.83×10-5 0.8608 9.70×104 8.47×10-4 1 6.14×104
表2  不同HSO3-浓度条件下2205双相不锈钢的电化学阻抗谱拟合结果
图3  Rfilm与NaHSO3浓度之间的关系
图4  2205双相不锈钢在不同浓度HSO3-模拟海水溶液中的Mott-Schottky曲线及NaHSO3浓度与所形成的钝化膜中点缺陷浓度Nd的变化关系
Concentration of NaHSO3 / molL-1 Fit-slope Nd / cm-3
0 5.83×109 1.55×1021
0.0050 3.84×109 2.36×1021
0.010 2.35×109 3.84×1021
0.050 4.26×109 2.13×1021
0.10 5.71×109 1.59×1021
表3  Mott-schottky曲线计算结果
图5  0.01 mol/L HSO3-模拟海水溶液中不锈钢表面钝化膜的XPS总谱图及Cr, Fe和S分谱拟合图
Concentration of HSO3- / molL-1 Cr Cr2O3 Cr(OH)3 CrO3
0 0.384 0.272 0.179 0.164
0.005 0.174 0.307 0.333 0.186
0.01 0.139 0.310 0.327 0.224
0.05 0.157 0.300 0.344 0.200
0.1 0.161 0.312 0.309 0.218
表4  不同浓度HSO3-模拟海水溶液中不锈钢表面钝化膜中不同价态Cr的含量
Concentration of HSO3- / molL-1 Fe Fe3O4 FeO Fe2O3 FeOOH
0 0.531 0.228 0.039 0.083 0.119
0.005 0.302 0.303 0.180 0.097 0.117
0.01 0.304 0.296 0.185 0.101 0.113
0.05 0.347 0.345 0.108 0.095 0.105
0.1 0.286 0.292 0.185 0.089 0.148
表5  不同浓度HSO3-模拟海水溶液中不锈钢表面钝化膜中不同价态Fe的含量
[1] Luo H, Dong C F, Cheng X Q, et al.Electrochemical behavior of 2205 duplex stainless steel in NaCl solution with different chromate contents[J]. J. Mater. Eng. Perform., 2012, 21(7): 1283
[2] Gong M, Zou Z, Zheng X W, et al.Corrosion behavior of 2205 duplex stainless steel in bittern[J]. Corros. Prot., 2009, 30(7): 473
[2] (龚敏, 邹振, 郑兴文等. 2205双相不锈钢在卤水环境中的腐蚀行为[J]. 腐蚀与防护, 2009, 30(7): 473)
[3] Ebrahimi N, Moayed M H, Davoodi A.Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium[J]. Corros. Sci., 2011, 53(4): 1278
[4] Tsai W T, Chen M S.Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution[J]. Corros. Sci., 2000, 42(3): 545
[5] Nicic I, Macdonald D D.The passivity of Type 316L stainless steel in borate buffer solution[J]. J. Nucl. Mater., 2008, 379(1): 54
[6] Fattah-alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 321 stainless steel: A test of the point defect model (PDM)[J]. Corros. Sci., 2001, 53(10): 3186
[7] Frankel G S.Pitting corrosion of metals: A review of the critical factors[J]. J. Electrochem. Soc., 1998, 145(6): 2186
[8] Cheng X Q, Li X G, Du C W.Properties of passive film formed on 316L/2205 stainless steel by Mott-Schottky theory and constant current polarization method[J]. Chin. Sci. Bull., 2009, 54(13): 2239
[9] Deng B, Jiang Y M, Gong J, et al.Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions[J]. Electrochem. Acta, 2008, 53(16): 5220
[10] Jin S, Liu C M, Lin X, et al.Effect of inorganic anions on the corrosion behavior of UNS S32750 duplex stainless steel in chloride solution[J]. Mater. Corros., 2015, 66(10): 1077
[11] Hou B R.Theory and Application of Marine Corrosion Environment [M]. Beijing: Science Press, 1999
[11] (侯保荣 .海洋腐蚀环境理论及其应用 [M]. 北京: 科学出版社,1999)
[12] Qiao Y X, Zheng Y G, Ke W, et al.Electrochemical behaviour of high nitrogen stainless steel in acidic solutions[J]. Corros. Sci., 2009, 51(5): 979
[13] Hamada E, Yamada K, Nagoshi M, et al.Direct imaging of native passive film on stainless steel by aberration corrected STEM[J]. Corros. Sci., 2010, 52(12): 3851
[14] Ningshen S, Kamachi Mudali U, Mittal V K, et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49(2): 481
[15] Bastos A C, Ferreira M G S, Sim?es A M. Comparative electrochemical studies of zinc chromate and zinc phosphate as corrosion inhibitors for zinc[J]. Prog. Inorgan. Coat., 2005, 52(4): 339
[16] Liu C, Bi Q, Leyland A, et al.An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behavior[J]. Corros. Sci., 2003, 45(6): 1257
[17] Ningshen S, Mudali U K, Mittal V K, et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49(2): 481
[18] Geringer J, Macdonald D D.Modeling fretting-corrosion wear of 316L SS against poly (methyl methacrylate) with the Point Defect Model: Fundamental theory, assessment, and outlook[J]. Electrochim. Acta, 2012, 79(4): 17
[19] Ge H H, Guo R F, Guo Y S, et al.Scale and corrosion inhibition of three water stabilizers used in stainless steel condensers[J]. Corrosion, 2008, 64(6): 553
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[5] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[6] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[7] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[8] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[9] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[10] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[11] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[12] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[13] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[14] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[15] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.