Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 659-664    DOI: 10.11902/1005.4537.2016.187
  研究报告 本期目录 | 过刊浏览 |
越南芽孢杆菌对2507双相不锈钢加速腐蚀的影响
孙朝晖1,2,Masoumeh Moradi1,杨丽景1,Robabeh Bagheri1,宋振纶1(),陈艳霞2
1. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室浙江省海洋材料与防护技术重点实验室 宁波 315201
2. 中国科学技术大学纳米科学技术学院 合肥 230026
Effect of Bacillus Vietnamensis as an Iron Oxidizing Bacterium on Corrosion of 2507 Duplex Stainless Steel in Sea Water
Zhaohui SUN1,2,Moradi Masoumeh1,Lijing YANG1,Bagheri Robabeh1,Zhenlun SONG1(),Yanxia CHEN2
1. Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2. Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, China
全文: PDF(847 KB)   HTML
摘要: 

从舟山腐蚀观测站采集并分离越南芽孢杆菌,通过电化学测试方法、表面分析技术和红外光谱研究其对2507双相不锈钢腐蚀行为的影响。结果表明,在细菌的作用下,双相不锈钢的开路电位和自腐蚀电位负移,腐蚀电流密度增大。SEM观察表明双相不锈钢表面有生物膜生成。Fourier变换红外光谱分析表明,在900~1200和1500~1600 cm-1区域有吸收峰,分别对应细菌的代谢产物胞外多糖和蛋白质;而在2800~2900 cm-1区域的宽峰则显示不锈钢表面产生了生物膜。电化学阻抗谱测试也表明双相不锈钢表面有生物膜生成。生物膜和氧化物的产生加速了不锈钢的腐蚀。

关键词 双相不锈钢腐蚀越南芽孢杆菌阳极极化Fourier变换红外光谱    
Abstract

Bacillus vietnamensis was collected from the East China Sea at the corrosion test site of Zhoushan Island, Zhejiang Province, and then separated as a bacterial strain. The effect of Bacillus vietnamensis on the corrosion of 2507 duplex stainless steel (2507 DSS) in sea water was investigated using different electrochemical-, surface analysis- and spectroscopy-methods. The results showed that the open circuit potential shifted to negative direction in the presence of this bacterium because of the activation of the 2507 DSS surface. The corrosion rate is measured by potentiodynamic polarization method and demonstrated that the corrosion rate of 2507 DSS increased in the presence of the bacterium. FE-SEM images also confirmed the above results and showed a biofilm formed on the 2507 DSS surface when exposed to Bacillus vietnamensis. FTIR spectrum showed several peaks at the range of 900~1200 and 1500~1600 cm-1 which are related to exopolysaccharide and proteins. A wide peak also observed at 2800~2900 cm-1 which makes this bacterium different from other bacteria. It is surprising that these peaks only can be observed after long exposure times and might be related to the biofilm formation on the steel surface. EIS results also showed the presence of biofilm on the surfaces. It can be concluded that the heterogenic biofilm and iron oxide on the steel surface accelerated the corrosion process of 2507 DSS surfaces.

Key wordsduplex stainless steel    corrosion    Bacillus vietnamensis    anodic polarization    FTIR
    
基金资助:国家自然科学基金外国青年学者研究基金项目 (51650110496),浙江省公益项目 (2015C31031)和宁波市自然科学基金项目 (2015A610070) 资助

引用本文:

孙朝晖,Masoumeh Moradi,杨丽景,Robabeh Bagheri,宋振纶,陈艳霞. 越南芽孢杆菌对2507双相不锈钢加速腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 659-664.
Zhaohui SUN, Moradi Masoumeh, Lijing YANG, Bagheri Robabeh, Zhenlun SONG, Yanxia CHEN. Effect of Bacillus Vietnamensis as an Iron Oxidizing Bacterium on Corrosion of 2507 Duplex Stainless Steel in Sea Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 659-664.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.187      或      https://www.jcscp.org/CN/Y2016/V36/I6/659

图1  2507双相不锈钢在空白海水和含菌海水中的开路电位
图2  2507双相不锈钢在空白海水和含菌海水中浸泡不同时间后的极化曲线
Condition Ecorr (vs SCE)
V
Icorr
μAcm-2
-Bc
mVdec-1
Ba
mVdec-1
Corrosion rate
10-3 mm/a
Sterile / 3 d -0.4293 0.863 250.9 105.0 10.03
Bacterial / 3 d -0.8106 2.030 145.9 102.5 23.59
Sterile / 7 d -0.4452 1.797 151.3 147.8 20.87
Bacterial / 7 d -0.7314 4.114 111.0 110.7 47.81
表1  2507双相不锈钢在空白海水和含菌海水中浸泡3和7 d后的极化参数
图3  2507双相不锈钢在空白海水和含菌海水中的Nyquist图和Bode图
图4  2507双相不锈钢在空白海水和含菌海水中浸泡不同时间后的电化学阻抗等效电路
Condition Rs
Ωcm2
Rct
kΩcm2
Rp
kΩcm2
Rbe
Ωcm2
Wo
Ss5cm-2
CPEct
μFcm-2
CPEp
μFcm-2
CPEb
μFcm-2
Sterile / 1 d 3.083 369.7 40.8 --- --- 39.8 107.2 ---
Sterile / 3 d 0.651 140.4 85.1 --- --- 61.8 82.1 ---
Sterile / 7 d 2.227 51.66 117.1 --- --- 31.6 98.8 ---
Bacterial / 1 d 0.749 337.4 --- 67.25 --- --- --- 46.8
Bacterial / 3 d
Bacterial / 7 d
2.225 12.98 --- 255.9 9.03×10-5 --- --- 190.3
1.547 4.967 --- 246.8 2.17×10-5 --- --- 152.7
表2  2507不锈钢在海水溶液中浸泡不同时间后的电化学阻抗参数
图5  2507双相不锈钢在含菌和空白海水中浸泡不同时间的SEM像
图6  2507双相不锈钢在含菌海水中浸泡15 d后表面生物膜的FTIR
[1] Nagarajan S, Rajendran N.Crevice corrosion behaviour of superaustenitic stainless steels: Dynamic electrochemical impedance spectroscopy and atomic force microscopy studies[J]. Corros. Sci., 2009, 51: 217
[2] de Messano L V, Sathler L, Reznik L Y, et al. The effect of biofouling on localized corrosion of the stainless steels N08904 and UNS S32760[J]. Int. Biodeter. Biodegr., 2009, 63: 607
[3] Xu C, Zhang Y, Cheng G, et al.Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria[J]. Mater. Charact., 2008, 59: 245
[4] Duan J, Hou B, Yu Z.Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria[J]. Mat. Sci. Eng., 2006, C26: 624
[5] Iwona B.Encyclopedia of Environmental Microbiology[M]. New York: John Wiley & Sons, Inc., 2002
[6] Videla H, Beech I, Watkins P, et al.The role of iron in SRB influenced corrosion of mild steel[J]. Corrosion, 1998, 98: 289
[7] Castaneda H, Benetton X D.SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J]. Corros. Sci., 2008, 50: 1169
[8] von Wolzogen Kuhr C A H. Unity of anaerobic and aerobic iron corrosion process in the soil[J]. Corrosion, 1961, 17: 119
[9] Janroblero J, Romero J M, Amaya M, et al.Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline[J]. Appl. Microbiol. Biot., 2004, 64: 862
[10] Zhu X Y, Lubeck J, Ii J J K. Characterization of microbial communities in gas industry pipelines[J]. Appl. Environ. Microb., 2003,69: 5354
[11] Rajasekar A, Anandkumar B, Maruthamuthu S, et al.Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines[J]. Appl. Microbiol. Biot., 2010, 85: 1175
[12] Marques J M, Almeida F P D, Lins U, et al. Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor[J]. World J. Microb. Biot., 2012, 28: 2355
[13] Giacobone A F F, Rodriguez S A, Burkart A L, et al. Microbiological induced corrosion of AA 6061 nuclear alloy in highly diluted media by Bacillus cereus RE 10[J]. Int. Biodeter. Biodegr., 2011, 65: 1161
[14] Mansfeld F, Hsu H, O?Rnek D, et al. Corrosion control using regenerative biofilms on aluminum 2024 and brass in different media[J]. J. Electrochem. Soc., 2002, 149: 2291
[15] Jack R F, Ringelberg D B, White D C.Differential corrosion rates of carbon steel by combinations of Bacillus sp., Hafnia alvei and Desulfovibrio gigas established by phospholipid analysis of electrode biofilm[J]. Corros. Sci., 1992, 33: 1843
[16] Juzeliūnas E, Ramanauskas R, Lugauskas A, et al.Influence of wild strain Bacillus mycoides on metals: From corrosion acceleration to environmentally friendly protection[J]. Electrochim. Acta, 2006, 51: 6085
[17] Bolton N, Critchley M, Fabien R, et al.Microbially influenced corrosion of galvanized steel pipes in aerobic water systems[J]. J. Appl. Microbiol., 2010, 109: 239
[18] Kester D R, Duedall I W, Connors D N, et al.Preparation of artificial seawater1[J]. Limnol. Oceanogr., 1967, 12: 176
[19] Starosvetsky J, Starosvetsky D, Pokroy B, et al.Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling[J]. Corros. Sci., 2008, 50: 540
[20] Goulart C M, Esteves-Souza A, Martinez-Huitle C A, et al. Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors[J]. Corros. Sci., 2013, 67: 281
[21] Moradi M, Song Z, Yang L, et al.Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel[J]. Corros. Sci., 2014, 84: 103
[22] Poortinga A T, Bos R, Busscher H J.Charge transfer during staphylococcal adhesion to TiNOX?; coatings with different specific resistivity[J]. Biophys. Chem., 2001, 91: 273
[23] Babu R J, Pandit J K.Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir-type transdermal delivery systems[J]. Int. J. Pharm., 2005, 288: 325
[24] Dean A P, Sigee D C, Estrada B, et al.Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae[J]. Bioresour. Technol., 2010, 101: 4499
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.