Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 637-644    DOI: 10.11902/1005.4537.2016.186
  研究报告 本期目录 | 过刊浏览 |
钼酸盐插层锌铝铈水滑石的制备与缓蚀性能研究
王吉会(),闫华杰,胡文彬
天津大学材料科学与工程学院 天津 300350
Preparation and Inhibition Behavior of Molybdate Intercalated ZnAlCe-hydrotalcite
Jihui WANG(),Huajie YAN,Wenbin HU
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
全文: PDF(809 KB)   HTML
摘要: 

利用水热法合成了钼酸盐插层锌铝铈水滑石 (ZnAlCe-MoO4 LDH),并通过单因素试验和正交试验对水热合成过程中的n(Al3+)/n(Ce3+) 摩尔比、反应温度、陈化温度等工艺参数进行了优化。利用扫描电镜、X射线衍射仪、红外光谱等对ZnAlCe-MoO4 LDH的形貌和结构进行了表征,并通过电化学阻抗谱、X射线光电子能谱等技术研究了ZnAlCe-MoO4 LDH对Q235碳钢在3.5% (质量分数) NaCl溶液中的缓蚀性能和缓蚀机制。结果表明,合成的ZnAlCe-MoO4 LDH呈片层状,片层厚度约为30 nm;ZnAlCe-MoO4 LDH的最佳制备工艺条件为:n(Al3+)/n(Ce3+) 摩尔比6:1,反应温度60 ℃,陈化温度100 ℃。ZnAlCe-MoO4LDH对碳钢在3.5%NaCl溶液中的缓蚀作用,一方面体现在ZnAlCe-MoO4LDH层板间的MoO42-会与溶液中的Cl-发生离子交换,降低了溶液中的Cl-含量;另一方面释放到溶液中的MoO42-会与Fe2+和Fe3+形成钼酸盐钝化膜,且层板上释放出的Zn2+和Ce3+会与OH-形成氢氧化物沉积膜,从而减缓了Q235钢在3.5%NaCl溶液中的腐蚀速率。

关键词 水滑石缓蚀剂正交试验碳钢海水    
Abstract

Molybdate intercalated ZnAlCe-hydrotalcite (ZnAlCe-MoO4 LDH) was synthesized by using solvothermal method, and the preparation parameters such as n(Al3+)/n(Ce3+) ratio, reaction temperature and crystallization temperature were optimized by single factor and orthogonal experiments. The surface morphology and structure of the prepared ZnAlCe-MoO4 LDH were characterized by SEM, XRD and FT-IR methods. The inhibition behavior of ZnAlCe-MoO4 LDH for Q235 steel in 3.5%(mass fraction) NaCl solution were investigated by EIS and XPS. Results show that the synthesized ZnAlCe-MoO4 LDH presents laminar microstructure with the thickness of 30 nm. The optimum preparation conditions are n(Al3+)/n(Ce3+) ratio of 6:1, reaction temperature of 60 ℃and crystallization temperature of 100 ℃. The inhibition effect of ZnAlCe-MoO4 LDH on the corrosion of Q235 steel in 3.5%NaCl solution may be ascribed to the reduction of chloride concentration in 3.5%NaCl solution owing to the anion exchange with molybdate, the formation of passive film with the composition of ferrous or iron molybdate and the deposition of film consisted of zinc and cerium hydroxides.

Key wordslayered double hydroxide    inhibitor    orthogonal experiment    carbon steel    seawater
    
基金资助:国家自然科学基金项目 (51471117) 和国家重点基础研究发展计划项目 (2014CB046801) 资助

引用本文:

王吉会,闫华杰,胡文彬. 钼酸盐插层锌铝铈水滑石的制备与缓蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 637-644.
Jihui WANG, Huajie YAN, Wenbin HU. Preparation and Inhibition Behavior of Molybdate Intercalated ZnAlCe-hydrotalcite. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 637-644.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.186      或      https://www.jcscp.org/CN/Y2016/V36/I6/637

Experiment No. Factor Inhibitionrate / %
n(Al3+)/n(Ce3+) ratio Reactiontemperature / ℃ Crystallization temperature / ℃
1 5:1 25 80 19.33
2 5:1 40 100 42.92
3 5:1 60 120 43.59
4 5:1 80 140 11.52
5 6:1 25 100 37.02
6 6:1 40 80 50.90
7 6:1 60 140 52.10
8 6:1 80 120 34.08
9 7:1 25 120 40.01
10 7:1 40 140 29.24
11 7:1 60 80 51.85
12 7:1 80 100 39.70
13 8:1 25 140 38.62
14 8:1 40 120 37.20
15 8:1 60 100 49.52
16 8:1 80 80 36.60
表1  ZnAlCe-MoO4 LDH材料的正交试验设计与缓蚀率
图1  单因素试验条件下ZnAlCe-MoO4 LDH的缓蚀率与 n(Al3+)/n(Ce3+) 摩尔比、反应温度和陈化温度的变化关系
Factor n(Al3+)/n(Ce3+) ratio Reaction temperature / ℃ Crystallization temperature / ℃
K1 29.34 33.75 39.92
K2 43.32 40.07 42.29
K3 40.45 49.52 38.72
K4 40.49 30.48 32.87
R 13.98 19.04 9.42
Major factor BAC
Optimal level A2 B3 C2
表2  ZnAlCe-MoO4 LDH缓蚀率的极差分析
图2  正交试验条件下ZnAlCe-MoO4 LDH的缓蚀率与n(Al3+)/n(Ce3+) 摩尔比, 反应温度和陈化温度的变化关系
图3  ZnAlCe-MoO4 LDH的表面形貌和EDS结果
图4  ZnAlCe-MoO4LDH的XRD谱
图5  ZnAlCe-MoO4 LDH的红外吸收光谱
图6  Q235钢在3.5%NaCl和3.5%NaCl+2 g/L ZnAlCe-MoO4 LDH溶液中腐蚀后的表面形貌
图7  经3.5%NaCl溶液腐蚀后Q235钢表面腐蚀产物的XPS谱
图8  Q235钢经3.5%NaCl+2 g/L ZnAlCe-MoO4 LDH溶液腐蚀后表面的XPS谱
[1] Hou C Y.Seawater cooling treatment technology[J]. Ocean Technol., 2002, 21(4): 33
[1] (侯纯扬. 海水冷却技术[J]. 海洋技术, 2002, 21(4): 33)
[2] Wang W Z, Gao X, Gao L L, et al.Progress in environmental-friendly inhibitor for carbon steel in seawater recirculating cooling system[J]. Corros. Sci. Prot. Technol., 2013, 25(4): 3313
[2] (王维珍, 高翔, 高丽丽等. 海水循环冷却系统中环境友好型碳钢缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2013, 25(4): 331)
[3] Fouda A S, Megahed H, Ead D M.Lanthanides as environmentally friendly corrosion inhibitors of iron in 3.5%NaCl solution[J]. Desalin. Water Treat., 2013, 51(16-18): 3164
[4] Wu M T, Li Y T, Li Z F, et al.Corrosion inhibition performance of chitosan and phosphonic chitosan for mild steel in seawater[J]. J. Chin. Soc. Corros. Prot., 2010, 30(3): 192
[4] (吴茂涛, 李言涛, 李再峰等. 水溶性壳聚糖及其磷酸酯在海水中对碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2010, 30(3): 192)
[5] Rui Y L, Lu M X, Liang Y H, et al.Inhibition behavior of molybdate inhibitors for carbon steel in sea water[J]. Corros. Prot., 2007, 28(2): 61
[5] (芮玉兰, 路迈西, 梁英华等.钼酸盐复合缓蚀剂对海水中碳钢的缓蚀作用[J]. 腐蚀与防护, 2007, 28(2): 61)
[6] Buchheit R G, Mamidipally S B, Schmutz P.Active corrosion protection in Ce-modified hydrotalcite conversion coatings[J]. Corrosion, 2002, 58(1): 3
[7] Kendig M, Hon M, Warren L.'Smart' corrosion inhibiting coatings[J]. Prog. Org. Coat., 2003, 47: 183
[8] Duan X, Lu J.Two Dimensional Nano Composite Metal Hydroxide: Structure, Assembly and Function [M]. Beijing: Science Press, 2013
[8] (段雪, 陆军. 二维纳米复合金属氢氧化物:结构、组装与功能[M]. 北京: 科学出版社, 2013)
[9] Yu X, Niu X C, Yu Z D.Study on adsorption of chloride ion on molybdate intercalated hydrotalcite[J]. Surf. Technol., 2012, 41(6): 26
[9] (于湘, 牛显春, 俞志东. 缓蚀剂钼酸盐插层水滑石对Cl-吸附行为的研究[J]. 表面技术, 2012, 41(6): 26)
[10] Wang Y, Zhang D.Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn-Al layered double hydroxides[J]. Mater. Res. Bull., 2011, 46: 1963
[11] Hang T X, Truc T A, Duong N T, et al. Preparation and characterization of nanocontainers of corrosion inhibitor based on layered double hydroxides [J]. Appl. Clay Sci., 2012, 67/68: 18
[12] Mohapatra L, Parida K, Satpathy M. Molybdate/tungstate intercalated oxo-bridged Zn/Y LDH for solar light induced photodegradation of organic pollutants [J]. J. Phys. Chem., 2012, 116(24)C: 13063
[13] Mitchell P C H, Wass S A. Propane dehydrogenation over molybdenum hydrotalcite catalysts[J]. Appl. Catal. A-Gen., 2002, 225(1): 153
[14] Kloprogge J T, Frost R L.Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites[J]. J. Solid State Chem., 1999, 146(2): 506
[15] Zeng R C, Liu Z G, Zhang F, et al. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy [J]. J. Mater. Chem., 2014, 2(32)A: 13049
[16] Fleutot S, Dieudonné B, Dupin J C, et al.Thermal behaviors and grafting process of LDH/benzene derivative hybrid systems[J]. Thermochim. Acta, 2012, 538: 1
[17] Zou Y, Wang J, Zheng Y Y.Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corros. Sci., 2011, 53(1): 208
[18] Yan H J, Wang J H, Zhang Y, et al.Preparation and inhibition properties of molybdate intercalated ZnAlCe layered double hydroxide[J]. J. Alloy. Compd., 2016, 678: 171
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[7] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[8] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[9] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[10] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[11] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[12] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[13] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[14] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[15] 杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.