Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 617-623    DOI: 10.11902/1005.4537.2016.182
  研究报告 本期目录 | 过刊浏览 |
Q235钢超疏水表面制备及耐蚀性能研究
张方铭1,2,曾志翔1(),王刚1,陈军君1,徐勇1,王立平1
1. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室浙江省海洋材料与防护技术重点实验室 宁波 315201
2. 烟台大学化学化工学院 烟台 264005
Fabrication and Anti-corrosion Performance of Super-hydrophobic Surface Film on Q235 Steel Substrate
Fangming ZHANG1,2,Zhixiang ZENG1(),Gang WANG1,Junjun CHEN1,Yong XU1,Liping WANG1
1. Zhejiang Key Laboratory of Marine Materials and Protection Technology, Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
2. College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
全文: PDF(1410 KB)   HTML
摘要: 

采用化学刻蚀与低表面能修饰的方法在Q235钢基体上制得超疏水表面。通过扫描电镜 (SEM)、激光共聚焦显微镜 (CLSM) 、接触角测量仪研究了刻蚀液组成对金属表面粗糙度以及润湿性的影响。利用电化学工作站对其表面防腐性能进行了测试。结果表明:通过化学刻蚀和低表面能物质修饰相结合的方法成功地制备了超疏水表面;刻蚀液中硝酸的浓度对金属表面粗糙度起主要作用,随着刻蚀液中硝酸浓度的增加,粗糙度呈现先增大后减小的趋势。通过在粗糙结构表面构筑低表面能涂层可以获得超疏水表面,经浓度为20% (质量分数) 硝酸刻蚀液刻蚀的表面涂覆二甲基硅氧烷 (PDMS) 后,疏水性最佳,接触角为163°。电化学数据表明,超疏水金属表面具有较好的防腐性能,这主要是由超疏水表面的空气层、PDMS层和疏水金属表面三者的协同作用形成的腐蚀抑制作用。

关键词 刻蚀粗糙度聚二甲基硅氧烷超疏水表面防腐蚀    
Abstract

A superhydrophobic surface film on Q235 steel substrate was prepared by chemical etching and then applying a film with low energy. The surface roughness and wettability of the steel prepared by chemical etching were characterized by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and contact angle measuring instrument. The concentration of nitric acid in the etching liquid plays a major role for the surface roughness of the steel. With the increase of the nitric acid concentration in the etching solution, the surface roughness of the steel increased in the beginning stage and then decreased. Among others, the steel surface etched with 20%(mass fraction) HNO3 is the best for further processing. Then the superhydrophobic surface film was then fabricated by applying the low surface energy film of polydimethylsiloxane (PDMS) on the chemical etched steel. The result revealed that the as-prepared superhydrophobic surface exhibits a contact angle of 163° and excellent corrosion resistance in 3.5%NaCl solution, which may be attributed to the synergistic effect of an air film on the superhydrophobic surface, the PDMS film itself and the hydrophobic steel surface.

Key wordsetching    roughness    PDMS    superhydrophobic surface    corrosion protection
    

引用本文:

张方铭,曾志翔,王刚,陈军君,徐勇,王立平. Q235钢超疏水表面制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 617-623.
Fangming ZHANG, Zhixiang ZENG, Gang WANG, Junjun CHEN, Yong XU, Liping WANG. Fabrication and Anti-corrosion Performance of Super-hydrophobic Surface Film on Q235 Steel Substrate. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 617-623.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.182      或      https://www.jcscp.org/CN/Y2016/V36/I6/617

图1  在微/纳米结构衬底上自组装膜的制备方法示意图
图2  刻蚀液中硝酸浓度与Q235钢表面粗糙度的关系
图3  经不同硝酸浓度刻蚀液刻蚀后Q235钢表面的三维形貌
图4  刻蚀液中乙醇浓度与Q235钢表面粗糙度
图5  经不同浓度乙醇刻蚀液刻蚀后的Q235钢表面三维形貌图
图6  经不同硝酸浓度刻蚀液刻蚀后的Q235钢表面润湿性
图7  经不同浓度硝酸刻蚀液刻蚀后的Q235钢表面的SEM像
图8  经PDMS修饰后的刻蚀表面的接触角
图9  不同润湿性样品在3.5%NaCl溶液中浸泡2 h后的极化曲线和Bode图
Eectrode Ecorr / mV Icorr / Acm-2
Substrate -214.3 1.431×10-6
Etched substrate -176.5 1.281×10-7
PDMS coated substrate -151.2 1.116×10-8
PDMS coated etched substrate -146.7 8.542×10-9
表1  不同润湿性样品在3.5%NaCl溶液中浸泡2 h后的腐蚀电流密度和腐蚀电位
[1] Zhang N, Sun L J, Liu S, et al.Electrochemical corrosion behavior of Q235 steel in simulated soil solutions of coastal tidal flats with different concentration of chloride ion[J]. Mater. Prot., 2015, 48(1): 44
[1] (张宁, 孙立娟, 刘栓等. Q235钢在不同C1-浓度滨海滩涂土壤中的电化学腐蚀行为[J]. 材料保护, 2015, 48(1): 44)
[2] Xu J, Wang K, Sun C, et al.The effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating by using electrochemical impedance spectroscopy[J]. Corros. Sci., 2011, 53(4): 1554
[3] Zhao P, Yang J X, Du D Y, et al. The effects of sulfate reducing bacteria on crevice corrosion behavior of Q235 steel [J]. Adv. Mater. Res., 2011, 393-395: 1541
[4] Sun X, Ran T, Lin L, et al.Fabrication and characterization of polycrystalline silicon nanowires with silver-assistance by electroless deposition[J]. Appl. Surf. Sci., 2011, 257(9): 3861
[5] Liang Y, Wang M D, Wang C, et al.Facile synthesis of smart nanocontainers as key components for construction of self-healing coating with superhydrophobic surfaces[J]. Nanoscale Res. Lett., 2016, 11(1): 1
[6] Wang G, Zeng Z, Chen J, et al.Ultra low water adhesive metal surface for enhanced corrosion protection[J]. RSC Adv., 2016, 6: 40641
[7] Nie Z Y, Liu J H, Zhang Y W, et al.Progress of sol-gel anti-corrosion coatings on metals[J]. Surf. Technol., 2015, 44(6): 75
[7] (聂志云, 刘继华, 张有为等. 金属表面溶胶-凝胶防腐蚀涂层的研究进展[J]. 表面技术, 2015, 44(6): 75)
[8] Lin C, Zhao X B, Zhang Y F, et al.Research progress on cavitation-corrosion of metallic[J]. J. Chin. Soc. Corros. Prot., 2016, 36(1): 11
[8] (林翠, 赵晓斌, 张翼飞. 金属材料的空化腐蚀行为及影响因素研究进展[J]. 中国腐蚀与防护学报, 2016, 36(1): 11)
[9] Li J, Zong Y W, Jin Z H, et al.Electrochemical corrosion behavior of several kinds of metal materials in the condensate of blast furnace gas pipeline[J]. Mater. Prot., 2016, 49(2): 69
[9] (李嘉, 宗仰炜, 金志浩等. 几种金属材料在高炉煤气管道冷凝液中的电化学腐蚀行为[J]. 材料保护, 2016, 49(2): 69)
[10] Hou W P, Ge Z Y, Zhao W Y.Anticorrosion performance of epoxy coating containing perchloric acid doped polyaniline for Q235 steel[J]. Corros. Sci. Prot. Technol., 2013, 25(2): 121
[10] (侯文鹏, 葛子义, 赵文元. 高氯酸掺杂聚苯胺/环氧涂层对Q235碳钢防腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2013, 25(2): 121)
[11] Deshpande P P, Jadhav N G, Gelling V J, et al.Conducting polymers for corrosion protection: A review[J]. J. Coat. Technol. Res., 2014, 11(4): 473
[12] El-Haddad M N, Fouda A S. Electroanalytical, quantum and surface characterization studies on imidazole derivatives as corrosion inhibitors for aluminum in acidic media[J]. J. Mol. Liq., 2015, 209: 480
[13] Boscher N D, Vaché V, Carminati P, et al.A simple and scalable approach towards the preparation of superhydrophobic surfaces-importance of the surface roughness skewness[J]. J. Mater. Chem.,2014, A2(16): 5744
[14] Wu J, Xia J, Lei W, et al.Superhydrophobic surface based on a coral-like hierarchical structure of ZnO[J]. PLOS One, 2010, 5(12): e14475
[15] Liao R, Zuo Z, Guo C, et al.Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property[J]. Appl. Surf. Sci., 2014, 317: 701
[16] Liu J, Xiao X, Shi Y, et al.Fabrication of a superhydrophobic surface from porous polymer using phase separation[J]. Appl. Surf. Sci., 2014, 297(4): 33
[17] Marinaro G, Burghammer M, Costa L, et al.Directed growth of virus nanofilaments on a superhydrophobic surface[J]. ACS Appl. Mater. Interf., 2015, 7(23): 12373
[18] Zhang X F, Chen R J, Hu J M.Superhydrophobic surface constructed on electrodeposited silica films by two-step method for corrosion protection of mild steel[J]. Corros. Sci., 2016, 104: 336
[19] Ju J, Wang T, Wang Q.A facile approach in fabricating superhydrophobic and superoleophilic poly (vinylidene fluoride) membranes for efficient water-oil separation[J]. J. Appl. Polym. Sci., 2015, 132(24): 42077
[20] Jiang H B, Zhang Y L, Han D D, et al.Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference[J]. Adv. Funct. Mater., 2014, 24(29): 4720
[21] Feng L, Ma M, Zang D, et al.Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation[J]. Carbohydr. Polym., 2014, 103(4): 480
[22] Peng S, Tian D, Yang X, et al.Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires[J]. ACS Appl. Mater. Interf., 2014, 6(7): 4831
[23] Yamaguchi M, Suzuki S, Sasaki S, et al.Fabrication of nano-periodic structures and modification of the Wenzel model to estimate contact angle[J]. Sensors Actuator. A Phys., 2014, 212(6): 87
[24] Yen T H, Soong C Y. Hybrid cassie-wenzel model for droplets on surfaces with nanoscale roughness [J]. Phys. Rev., 2016, 93(2)E: 022805
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[3] 任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[4] 孙伟, 尹桂来, 刘福春, 唐囡, 韩恩厚, 万军彪, 柯伟, 邓静伟. 装载缓蚀剂的纳米SiO2对环氧涂层耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 2015, 35(5): 447-454.
[5] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[6] 尹成勇, 李澄, 彭晓燕, 王加余, 王艳慧, 郑顺丽, 李敏, 胡玮. 溶胶-凝胶法制备超疏水性纳米复合防腐涂层[J]. 中国腐蚀与防护学报, 2014, 34(3): 257-264.
[7] 马 欢 戴亚堂 李常雄 张 欢 欧青海 申 振. 聚噻吩的电化学合成及其对不锈钢的抗腐蚀性研究[J]. 中国腐蚀与防护学报, 2013, 33(2): 148-152.
[8] 胡吉明,杨亚琴,张鉴清,曹楚南. 电沉积防护性硅烷薄膜的研究现状与展望[J]. 中国腐蚀与防护学报, 2011, 31(1): 1-9.
[9] 郭海艳,朱君秋,邵艳群,唐电. 表面活性剂辅助制备钛阳极的电化学性能[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[10] 陈中华 唐英 余飞. 一种环保水性抗静电防腐蚀涂料的性能研究[J]. 中国腐蚀与防护学报, 2009, 29(2): 113-118.
[11] 王帅波 尹衍升 刘涛 滕少磊. 超疏水膜改性Fe3Al在海水中的腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(2): 137-140.
[12] 范力茹 刘玉文 王宽 李媛 孙奇娜. 试样状态对Cu-Cr合金脱铬腐蚀的影响[J]. 中国腐蚀与防护学报, 2009, 29(1): 15-18.
[13] 鲍玉胜; 王玮; 尹衍升; 赵文元; 张玥; 房晶瑞; 梁亮; 王敏 . TiO2薄膜在海水中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2008, 28(5): 287-290 .
[14] 刘倞; 胡吉明; 张鉴清; 曹楚南 . 金属表面硅烷化防护处理及其研究现状[J]. 中国腐蚀与防护学报, 2006, 26(1): 59-64 .
[15] 邵亚薇; 严川伟; 杜元龙; 王福会 . 钛酸酯偶联剂对纳米Ti粉在环氧树脂中分散性的影响[J]. 中国腐蚀与防护学报, 2005, 25(4): 232-236 .