Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 595-603    DOI: 10.11902/1005.4537.2016.181
  研究报告 本期目录 | 过刊浏览 |
Zn对挤压态Mg-13Gd-2Cu合金的显微组织及腐蚀性能影响
耿振伟,肖代红()
中南大学 粉末冶金国家重点实验室 长沙 410083
Effect of Zn Addition on Microstructure and Corrosion Property of As-extruded Mg-13Gd-2Cu Alloy
Zhenwei GENG,Daihong XIAO()
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
全文: PDF(1818 KB)   HTML
摘要: 

通过扫描电子显微镜及能谱分析、电子探针、X射线衍射、单面浸泡定量腐蚀以及电化学腐蚀测试等方法,研究了Zn对挤压态Mg-13Gd-2Cu合金的显微组织及腐蚀性能影响。结果表明,Mg-13Gd-2Cu合金主要由α-Mg基体、Mg5(GdCu)1以及稀土单质Gd相组成。添加2% (质量分数) Zn,基体合金的显微结构发生了明显改变,产生了长程有序堆垛 (LPSO) Mg12(GdCuZn)1相。添加Zn之后,合金的腐蚀速率由1.51 mm/d降低到1.23 mm/d。不同扫描速率下电化学腐蚀测试得出的Tafel曲线表明,含Zn合金的自腐蚀电位发生了正移,腐蚀电流密度降低了约0.18 mAcm-2。因此,添加2%Zn使得Mg-13Gd-2Cu合金形成了LPSO相,提高了合金的抗腐蚀性能。

关键词 稀土镁合金添加锌显微结构长程有序堆垛相腐蚀性能    
Abstract

The effect of Zinc addition on microstructure and corrosion property of the as-extruded Mg-13Gd-2Cu alloy were studied using scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS), electron microprobe analysis (EMPA), X-ray diffractometer, immersion test and electrochemical measurements. The result show that the Mg-13Gd-2Cu alloy consists mainly of α-Mg, Mg5(GdCu)1 and elemental Gd phase. When 2%(mass fraction) Zn added in the Mg-13Gd-2Cu alloy, a long period stacking order (LPSO) phase Mg12(GdCuZn)1 forms. The presence of the LPSO phase enables the corrosion rate of the alloy to be decreased from 1.51 mm/d to 1.23 mm/d. The results of electrochemical measurements with various scan rate indicate that the free-corrosion potential (Ecorr) shifts positively and the free-corrosion current density (Icorr) decreases about 0.18 mAcm-2 for the Mg-13Gd-2Cu-2Zn alloy. The reduction of Icorr proves that Zn addition can enhance the corrosion resistance of Mg-13Gd-2Cu alloy.

Key wordsrare magnesium alloy    adding Zn    microstructure    LPSO phase    corrosion property
    
基金资助:中南大学粉末冶金国家重点实验室资助项目 (2016)和湖南省自然科学基金项目 (2016JJ2146) 资助

引用本文:

耿振伟,肖代红. Zn对挤压态Mg-13Gd-2Cu合金的显微组织及腐蚀性能影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 595-603.
Zhenwei GENG, Daihong XIAO. Effect of Zn Addition on Microstructure and Corrosion Property of As-extruded Mg-13Gd-2Cu Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 595-603.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.181      或      https://www.jcscp.org/CN/Y2016/V36/I6/595

图1  铸态合金显微组织的SEM像
Sample Phase Mg Gd Cu Zn
Mg-13Gd-2Cu α-Mg 99.6 0.4 --- ---
Mg5(GdCu)1 85.6 6.5 7.9 ---
Mg-13Gd-2Cu-2Zn α-Mg 99.2 0.4 --- 0.4
Mg5(GdCuZn)1 85.1 5.0 6.3 3.6
LPSO 92.6 4.3 0.8 2.3
Segregation region 63.8 10.3 12.0 13.9
表1  铸态合金各相的微区电子探针成分分析
图2  未添加和添加Zn的铸态Mg-13Gd-2Cu合金的XRD谱
图3  铸态Mg-13Gd-2Cu和Mg-13Gd-2Cu-2Zn合金的电子探针面扫描成分分布图
图4  挤压态Mg-13Gd-2Cu和Mg-13Gd-2Cu-2Zn合金的低倍背散射扫描电子显微像
图5  挤压态Mg-13Gd-2Cu和Mg-13Gd-2Cu-2Zn合金的高倍背散射扫描电子显微像
图6  单面浸泡腐蚀24 h后的二次电子显微像
图7  挤压态Mg-13Gd-2Cu和Mg-13Gd-2Cu-2Zn合金在不同扫描速率条件下的Tafel曲线
Corrosion rate / mVs-1 Sample Ecorr / V Icorr / mAcm-2 R / Ω
5 Mg-13Gd-2Cu -1.552 0.5668 60.1
Mg-13Gd-2Cu-2Zn -1.536 0.3046 62.9
2 Mg-13Gd-2Cu -1.535 1.0720 55.9
Mg-13Gd-2Cu-2Zn -1.487 0.9497 58.0
1 Mg-13Gd-2Cu -1.552 1.0541 56.5
Mg-13Gd-2Cu-2Zn -1.545 0.9392 58.2
0.5 Mg-13Gd-2Cu -1.544 1.2320 44.0
Mg-13Gd-2Cu-2Zn -1.496 0.9981 50.6
表2  未添加和添加Zn的Mg-13Gd-2Cu合金在不同扫描速率下的Tafel曲线拟合参数
图8  扫描速率为1 mV/s条件下挤压态Mg-13Gd-2Cu和Mg-13Gd-2Cu-2Zn合金试样腐蚀后的BS-SEM
[1] Pollock T M.Weight loss with magnesium alloys[J]. Science, 2010, 328: 986
[2] Joost W J.Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering[J]. JOM, 2012, 64: 1032
[3] Movahedi R A, Mahmudi R, Wu G H, et al.Enhanced superplasticity in an extruded high strength Mg-Gd-Y-Zr alloy with Ag addition[J]. J. Alloy. Compd., 2015, 626: 309
[4] Tang B Y, Chen P, Dong L L, et al.First-principles investigation of the structural and mechanical properties of β '' phase in Mg-Gd alloy system[J]. J. Alloy. Compd., 2010, 492(1/2): 416
[5] Zhang H J, Meng J, Tang D X.Investigation, exploitation and application of magnesium-rare earth alloy as a structure material[J]. J. Chin. Soc. Rare. Earth., 2004, 22(1): 40
[5] (张洪杰, 孟健, 唐定骧. 高性能镁–稀土结构材料的研制、开发与应用[J]. 中国稀土学报, 2004, 22(1): 40)
[6] Geng Z W, Xiao D H, Chen L.Microstructure, mechanical properties, and corrosion behavior of degradable Mg-Al-Cu-Zn-Gd alloys[J]. J. Alloy. Compd., 2016, 686: 145
[7] Niardike B L,Ebert T.Magnesium: properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[8] Watson D R, Durst D G, Harris J T, et al.One-trip multistage completion technology for unconventional gas formations [A]. CIPC/SPE Gas Technology Symposium 2008 Joint Conference[C]. Calgary: 2008
[9] Franco C, Solares R, Marri H, et al.The use of stagefrac new technology to complete and stimulate horizontal wells: field case [R]. Al-Khobar: SPE Saudia Arabia Section Technical Symposium, 2008
[10] Themig D.New technologies enhance efficiency of horizontal, mu-ltistage fracturing[J]. J. Pet. Technol., 2011, 63(4): 52
[11] Xu Z Y, Agrawal G. Nanomartix powder metal compact [P]. US. Patent, 2011US 20110132143A1
[12] Xu Z Y, Agrawal G, Salinas B J, et al.Smart nanostructured materials deliver high reliability completion tools for gas shale fracturing [R]. Denver: SPE Annual Technical Conference and Exhibition, 2011
[13] Xiao D H, Li X X. A kind of pressure as-cast magnesium alloy that can be corroded rapidly [P]. China Patent, 2013 CN 20130 284659
[14] Xiao D H, Geng Z W, Chen L.Effects of alloying elements on microstructure and properties of magnesium alloys for ball[J]. Metall. Mater. Trans., 2015, 46A: 4793
[15] Chen L, Wu Z, Xiao D H.Effects of copper on the microstructure and properties of Mg-17Al-3Zn alloys[J]. Mater. Corros., 2015 66: 1159
[16] Ma L J, Guo Z C, Song Y H, et al.Magnesium alloy sacrificial anode and its application in corrosion protection engineering[J]. Sichuan Chem. Ind. Corros. Control., 2003, 6(3): 38
[16] (马丽杰, 郭忠诚, 宋曰海等. 镁合金牺牲阳极及其在防腐蚀工程中的应用[J]. 四川化工与腐蚀控制, 2003, 6(3): 38)
[17] Zhang J S, Xu J D, Cheng W L, et al.Corrosion behavior of Mg-Zn-Y alloy with long-period stacking ordered structures[J]. J. Mater. Sci. Technol., 2012, 28(12): 1157
[18] Li Y.The control of LPSO phase and its influence on the corrosion behavior of Mg-RE-Zn series magnesium alloys [D]. Chongqing: Chongqing University, 2015
[18] (李阳. Mg-RE-Zn系镁合金中LPSO相的调控及其对腐蚀行为的影响 [D]. 重庆: 重庆大学, 2015)
[19] He W W, Zhang E L, Yang K.Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution[J]. Mater. Sci. Eng., 2010, C30: 167
[20] Zhao M Q, Lei A L.Metal Corrosion and Metal Corrosion Protection [M]. Beijing: National Defence Industry Press, 2014
[20] (赵麦群, 雷阿丽. 金属的腐蚀与防护 [M]. 北京: 国防工业出版社, 2014)
[21] Zhao X, Shi L, Xu J.Mg-Zn-Y alloys with long-period stacking ordered structure: In vitro assessments of biodegradation behavior[J]. Mater. Sci. Eng., 2013, C33(7): 3627
[22] Li H Y, Li Z S, Zhang S Z.Corrosion and protection research of magnesium alloys[J]. Corros. Prot., 2010, 31(11): 878
[22] (李海燕, 李志生, 张世珍等. 镁合金的腐蚀与防护研究进展[J]. 腐蚀与防护, 2010, 31(11): 878)
[23] Zeng R C, Chen J, Zhang J.Research and progress of galvanic corrosion of magnesium alloys[J]. Mater. Rev., 2008, 22(1): 107
[23] (曾荣昌, 陈君, 张津. 镁合金电偶腐蚀研究及其进展[J]. 材料导报, 2008, 22(1): 107)
[24] Li W C.Corrosion and rare earth conversion coating of magnesium alloy with high strength and toughness [D]. Tianjin: Tianjin University, 2011
[24] (李文才. 高强韧镁合金的腐蚀及稀土转化处理研究 [D]. 天津: 天津大学, 2011)
[25] Huang S, Wang J F, Hou F, et al.Effect of Sn on the formation of the long period stacking ordered phase and mechanical properties of Mg-RE-Zn alloy[J]. Mater. Lett., 2014, 137: 143
[26] Abady G M, Hilal N H, Rabiee M E, et al.Effect of Al content on the corrosion behavior of Mg-Al alloys in aqueous solutions of different pH[J]. Electrochim. Acta, 2010, 55(22): 6651
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[5] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[6] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[7] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[8] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[9] 王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[10] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[11] 刘子利, 刘希琴, 王怀涛, 胡金东, 侯志国. Ti对Zn-5Al合金组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 515-522.
[12] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[13] 赵 凯 尹志民 段佳琦 邓 英. 时效处理工艺对1975合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 153-158.
[14] 刘子利,朱晓春,周桂斌,李健. Sb对Mg-5Al-2Sr合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 478-484.
[15] 张勇,覃作祥,许鸿吉,常凯,陆兴,佟维. 经济型铁素体不锈钢与耐候钢异种金属接头的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(2): 115-122.