Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 573-579    DOI: 10.11902/1005.4537.2016.176
  研究报告 本期目录 | 过刊浏览 |
非晶Ti-B基涂层的力学和耐蚀性能研究
徐相英1,2,葛芳芳2,李朋2,舒瑞2,黄峰2(),李谋成1
1. 上海大学 材料科学与工程学院 上海 200072
2. 中国科学院宁波材料技术与工程研究所 宁波 315201
Corrosion Resistance and Hardness of Amorphous Ti-B Based Coatings
Xiangying XU1,2,Fangfang GE2,Peng LI2,Rui SHU2,Feng HUANG2(),Moucheng LI1
1. Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(750 KB)   HTML
摘要: 

采用磁控溅射技术,分别在康宁玻璃、硅片和NdFeB合金基材表面沉积一层非晶的Ti-B基涂层。非晶Ti-B基涂层可以消除磁控溅射常见的柱状晶结构。利用XRD,SEM,纳米压痕仪和电化学工作站对涂层的结构、力学性能和耐蚀行为进行表征。结果表明:通过工艺控制,获得了密度分别为4.04,4.27和4.61 g/cm3的Ti-B基涂层。所获得的Ti-B基涂层呈现均匀、致密的非晶结构,消除了常见的柱状晶结构。非晶Ti-B基涂层的力学和耐蚀性能与其密度紧密相关。当密度提高14.11%时,硅片基底涂层的硬度提高了49.01%,NdFeB基底涂层的腐蚀电流密度降低了66.67%。当密度为4.61 g/cm3时,Si片上涂层的硬度和塑性指数分别是30.1 GPa和0.48;对于NdFeB基底在3.5% (质量分数) NaCl溶液中腐蚀电流密度为1.34×10-6 A/cm2,约为纯基材腐蚀电流密度的1/8;腐蚀电位为-0.689 V,相对于基材正移0.220 V。说明该非晶涂层对NdFeB基材具有较好的耐蚀保护作用。

关键词 非晶涂层金属基材硬度耐蚀性能    
Abstract

Amorphous Ti-B based coatings with various densities were deposited on various substrates, i.e. Eagle glass, silicon slice and NdFeB alloy respectively, by means of magnetron sputtering, and then their structure, hardness and corrosion resistance were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), nanoindentation tester, and Modulab electrochemical workstation. The results show that the prepared coatings are amorphous with densities varying in a range 4.04, 4.27 and 4.61 g/cm3 through controlling the processing parameter. Their cross-sectional morphologies show that all the coatings are homogeneous, compact and smooth without features of columnar structure existed in the common PVD coatings. The hardness and corrosion resistance of coatings are closely related to their densities. When the coating density is increased by 14.11%, the hardness is enhanced by 49.01% for the coatings deposited on silicon slice, and the corrosion current density is decreased to 1/3 of that of the one with density 4.04 g/cm3, for the coatings deposited on NdFeB. Correspondingly, the hardness and plastic index are 30.1 GPa and 0.48 respectively for the coating with density 4.61 g/cm3 on silicon slice. Meanwhile, all the coatings with various densities can provide corrosion protection for NdFeB substrates. With the increasing coating density the free corrosion potential shifts to the positive direction and the relevant free corrosion current density decreases gradually for the Ti-B coatings on NbFeB, in the contrast, the bare substrate is just the opposite. The coating with density 4.61 g/cm3 on NdFeB exhibits a free corrosion current density 1.34×10-6 A/cm2, about 1/8 of that of NdFeB substrate, and free corrosion potential -0.689 V, 0.220 V nobler than bare substrate in the 3.5% (mass fraction) NaCl solution. It follows that the amorphous and hard Ti-B coatings can provide good protectiveness to the NdFeB alloy in environments such as NaCl solution.

Key wordsamorphous coating    metal substrate    hardness    corrosion resistance
    
基金资助:国家重点基础研究发展计划项目 (2014CB643302) 和宁波市自然科学基金项目 (2015A610050) 资助

引用本文:

徐相英,葛芳芳,李朋,舒瑞,黄峰,李谋成. 非晶Ti-B基涂层的力学和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
Xiangying XU, Fangfang GE, Peng LI, Rui SHU, Feng HUANG, Moucheng LI. Corrosion Resistance and Hardness of Amorphous Ti-B Based Coatings. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 573-579.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.176      或      https://www.jcscp.org/CN/Y2016/V36/I6/573

Sample Densitygcm-3 Thicknessμm Atomic fraction of Ti / %
S1 4.04 1.72 39.5
S2 4.27 1.46 39.7
S3 4.61 1.33 39.5
表1  不同涂层的密度和Ti含量
图1  3种不同密度涂层的截面形貌
图2  3种不同Ti-B涂层的XRD谱
图3  Ti-B基涂层的硬度与压入模量
图4  3种不同密度涂层的塑性指数随密度的变化曲线
图5  3种不同密度Ti-B基涂层的极化曲线
Substrate Icorr / Acm-2 Ecorr / V RP / Ωcm2 Βa / Vdec-1 Βc / Vdec-1
S1 4.32×10-6 -0.768 3.82×103 0.062 0.098
S2 2.86×10-6 -0.722 5.68×103 0.065 0.088
S3 1.34×10-6 -0.689 7.38×103 0.046 0.045
NdFeB 8.39×10-6 -0.909 1.99×103 0.062 0.101
表2  涂层和NdFeB基底样品的电化学参数
图6  不同Ti-B非晶涂层的Bode图和Nyquist图
图7  阻抗谱拟合后的等效电路图
[1] Cheng X, Zhang R Y, Li F.Study on preparation and properties of TiB2 protective coating[J]. Paint Coat. Ind., 2011, 41(7): 24
[1] (陈枭, 张仁元, 李风. TiB2防护涂层的制备及性能[J]. 涂料工业, 2011, 41(7): 24)
[2] Sun C Y, He Q B, Li L, et al.Review of TiB2 coating deposited by magnetron sputtering method[J]. Mater. Rev., 2009, 23(14): 48
[2] (孙彩云, 何庆兵, 李立等. 磁控溅射法制备TiB2涂层的研究进展[J]. 材料导报, 2009, 23(14): 48)
[3] Navinsek B, Panjan P, Milosev I.PVD coatings as an environmentally clean alternative to electroplating and electroless processes[J]. Surf. Coat. Technol., 1999, 1(16): 476
[4] Fastner U, Steck T, Pascual A, et al.Electrochemical deposition of TiB2 in high temperature molten salts[J]. J. Alloy. Compd., 2008, 452(1): 32
[5] Lim J W, Lee J J, Ahn H, et al.Mechanical properties of TiN/TiB2 multilayers deposited by plasma enhanced chemical vapor deposition[J]. Surf. Coat. Technol., 2003, 17(4): 720
[6] Fenker M, Balzer M, Kappl H.Corrosion protection with hard coatings on steel: Past approaches and current research efforts[J]. Surf. Coat. Technol., 2014, 25(7): 182
[7] Korhonen A S.Corrosion of thin hard pvd coatings[J]. Vacuum, 1994, 45(10/11): 1031
[8] Liu C, Bi Q, Leyland A, et al.An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrosion behaviour[J]. Corros. Sci., 2003, 45(6): 1257
[9] Milosev I, Navinsek B A.Corrosion study of tin (physical vapor-deposition) hard coatings deposited on various substrates[J]. Surf. Coat. Technol., 1994, 63(3): 173
[10] Massiani Y, Medjahed A, Crousier J P, et al.Corrosion of sputtered titanium nitride films deposited on iron and stainless-steel[J]. Surf.Coat. Technol., 1991, 45(1-3): 115
[11] Purandare Y P, Ehiasarian A P, Hovsepian P E. Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering [J]. J. Vac. Sci. Technol., 2008, 26(2)A: 288
[12] Meng F P, Wang B, Ge F F, et al.Microstructure and mechanical properties of Ni-alloyed SiC coatings[J]. Surf. Coat. Technol., 2012, 21(3): 77
[13] Lin C H, Duh J G.Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5wt.%NaCl solution[J]. Surf. Coat. Technol., 2009, 204(6/7): 784
[14] Liu C, Bi Q, Leyland A, et al.An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling[J]. Corros. Sci., 2003, 45(6): 1243
[15] Valleti K, Jyothirmayi A, Ramakrishna M, et al. Influence of substrate temperature and bias voltage on properties of chromium nitride thin films deposited by cylindrical cathodic arc deposition [J]. J. Vac. Sci. Technol., 2011, 29(5)A: 1
[16] Wang H Y, Wang B, Li S Z, et al.Toughening magnetron sputtered TiB2 coatings by Ni addition[J]. Surf. Coat. Technol., 2013, 23(2): 767
[17] Gu W C, Li S D, Wang H Y, et al.Influence of bias voltage on microstructure and properties of magnetron sputtering TiB2 coating[J]. J. Aeronaut. Mater., 2014, 34(5): 37
[17] (谷文翠, 李寿德, 王怀勇等. 基片偏压对磁控溅射制备TiB2涂层结构及性能的影响[J]. 航空材料学报, 2014, 34(5): 37)
[18] Sundgren J E, Hentzell H T G A. Review of the present state of art in hard coatings grown from the vapor-phase [J]. J. Vac. Sci. Technol., 1986, 4(5)A: 2259
[19] Haines J, Leger J M, Bocquillon G.Synthesis and design of superhard materials[J]. Annu. Rev. Mater. Res., 2001, 31: 1
[20] Zhu P, Ge F F, Li S Z, et al.Microstructure, chemical states, and mechanical properties of magnetron co-sputtered V1-xAlxN coatings[J]. Surf. Coat. Technol., 2013, 23(2): 311
[21] Chen B F, Pan W L, Yu G P, et al.On the corrosion behavior of TiN-coated AISI D2 steel[J]. Surf. Coat. Technol., 1999, 111(1): 16
[22] Marco J F, Agudelo A C, Gancedo J R, et al.Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray (Phohesion) test: An evaluation by XPS[J]. Surf. Interface Anal., 1999, 27(2): 71
[23] Lin M T, Wan C H, Wu W T.Comparison of corrosion behaviors between SS304 and Ti substrate coated with (Ti,Zr) N thin films as metal bipolar plate for unitized regenerative fuel cell[J]. Thin Solid Films, 2013, 54(4): 162
[24] Nie X, Meletis E I, Jiang J C, et al.Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis[J]. Surf. Coat. Technol., 2002, 149(2/3): 245
[25] Qin L G, Zhao W J, Hou H, et al.Achieving excellent anti-corrosion and tribological performance by tailoring the surface morphology and chemical composition of aluminum alloys[J]. RSC Adv., 2014, 4(104): 60307
[26] Vacandio F, Massiani Y, Gravier P, et al.Improvement of the electrochemical behaviour of AlN films produced by reactive sputtering using various under-layers[J]. Electrochim. Acta, 2001, 46(24/25): 3827
[27] Liu C, Bi Q, Ziegele H, et al. Structure and corrosion properties of PVD Cr-N coatings [J]. J. Vac. Sci. Technol., 2002, 20(3)A: 772
[28] Creus J, Idrissi H, Mazille H, et al.Corrosion behaviour of TiN and CrN coatings produced by cathodic arc PVD process on mild steel substrate[J]. Surf. Eng., 1998, 14(5): 432
[1] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[2] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[3] 张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏. 铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[4] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[5] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[6] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[7] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[8] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[9] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[10] 胡新芳, 李辛庚, 樊志彬, 王晓明, 王学刚. 新型Zn-22Al-Mg-Re合金涂层性能研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 521-526.
[11] 文丽娟, 高志明, 刘洋洋, 林峰. 阴极保护电位对Q235钢氢脆敏感性和力学性能的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 271-276.
[12] 王淑艳,夏永平 刘 莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240.
[13] 王应发,黄国胜,程旭东,李相波,邢路阔,郭娟,马焱. 热喷涂Zn-Ni复合涂层在海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.
[14] 肖正涛,李相波,王佳,黄国胜,周雄. 冷喷涂铬锆铜涂层在海水中的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(1): 18-22.
[15] 周贤良,朱敏,薛会斌,彭新元,叶志国. 热轧带钢的初期耐大气腐蚀性能[J]. 中国腐蚀与防护学报, 2011, 31(2): 139-144.