Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (5): 421-427    DOI: 10.11902/1005.4537.2016.174
  研究报告 本期目录 | 过刊浏览 |
铜锡合金阳极在熔融碳酸盐中氧化膜的形成及其防护性能
杜开发,王彬,甘复兴,汪的华()
武汉大学 资源与环境科学学院 湖北省资源与能源可持续利用技术示范型国际科技合作基地 武汉 430072
Corrosion Performance of Oxide Scales on Bronze QSn7-0.2 Anode in Molten Carbonates
Kaifa DU,Bin WANG,Fuxing GAN,Dihua WANG()
International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China
全文: PDF(1032 KB)   HTML
摘要: 

通过动电位扫描阳极氧化成膜、恒电位预氧化成膜以及开路电位浸泡预氧化成膜3种途径分别得到了3种氧化膜各有差异的QSn7-0.2铜锡合金电极。采用光学显微分析与XRD测试,表征了各氧化膜的形貌和成分,并且利用阳极极化曲线研究了3种成膜电极在450 ℃ Li-Na-K三元共晶熔融碳酸盐中作为惰性析氧阳极的可行性。结果表明,恒电位预氧化成膜以及开路电位浸泡预氧化成膜两种成膜方法均能够在QSn7-0.2铜锡合金阳极表面形成含SnO2的氧化膜,该膜能够显著阻碍基体合金中Cu的阳极溶解腐蚀,并且对析氧反应具有确定的电催化性能。

关键词 铜锡合金熔融碳酸盐氧化膜钝化防护性能    
Abstract

Three different oxide scales on the surface of bronze QSn7-0.2 electrodes were prepared in Li-Na-K eutectic molten carbonates at 450°C via potentiodynamic polarization, potentiostatic polarization by 0.2 V and simple immersion by open circuit potential respectively, then were characterized by means of optical microscopy and X-ray diffractometer (XRD). While the feasibility of which as potential inert anode for electrochemical transformation of CO2 was assessed in the melt by electrochemical method. The result shows that besides Cu2O and CuO, SnO2 is detected in the oxide scales of the bronze QSn7-0.2 electrodes oxidized via potentiostatic polarization by 0.2 V and simple immersion by open circuit potential. The oxide scales with SnO2 can significantly prevent the bronze QSn7-0.2 anodes from corrosion and act also as electro-catalyzer for the oxygen evolution.

Key wordsCu-Sn alloy    molten carbonate    oxidation film    passivation    protection performance
收稿日期: 2016-09-22     
基金资助:国家自然科学基金 (51325102,21673162) 和国家科技部国际科技合作专项 (2015DFA90750)
作者简介: 杜开发,男,1992年生,博士生

引用本文:

杜开发,王彬,甘复兴,汪的华. 铜锡合金阳极在熔融碳酸盐中氧化膜的形成及其防护性能[J]. 中国腐蚀与防护学报, 2017, 37(5): 421-427.
Kaifa DU, Bin WANG, Fuxing GAN, Dihua WANG. Corrosion Performance of Oxide Scales on Bronze QSn7-0.2 Anode in Molten Carbonates. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 421-427.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.174      或      https://www.jcscp.org/CN/Y2017/V37/I5/421

图1  实验装置示意图
图2  QSn7-0.2、T2和Pt电极的阳极极化曲线及QSn7-0.2电极重复测试的阳极极化曲线
图3  QSn7-0.2电极阳极极化曲线测试前后的光学照片及极化后表面氧化膜的显微照片和 XRD谱
图4  QSn7-0.2电极阳极极化曲线测试过程中对电极还原产物的光学照片与XRD谱
图5  QSn7-0.2合金阳极0.2 V (vs Ag+/Ag)恒电位极化20 h的I-t曲线和极化前后的阳极极化曲线
图6  QSn7-0.2电极在0.2 V恒电位极化20 h前后的光学照片,极化后表面氧化膜的显微照片与XRD谱
图7  T2与QSn7-0.2电极在熔融碳酸盐中浸泡170 h的开路电位变化曲线,QSn7-0.2电极浸泡前后的阳极极化曲线
[1] Allanore A.Features and challenges of molten oxide electrolytes for metal extraction[J]. J. Electrochem. Soc., 2015, 162: E13
[2] Cheng X H, Tang D Y, Tang D D, et al.Cobalt powder production by electro-reduction of Co3O4 granules in molten carbonates using an inert anode[J]. J. Electrochem. Soc., 2015, 162: E68
[3] Yin H Y, Mao X H, Tang D Y, et al.Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis[J]. Energy Environ. Sci., 2013, 6: 1538
[4] Xu Y X, Zeng C L.Corrosion of materials for molten salt reactor[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 211
[4] (徐雅欣, 曾潮流. 熔盐电堆的材料腐蚀[J]. 中国腐蚀与防护学报, 2014, 34: 211)
[5] Wang Z G, Huang W, Lai Y Q.New progress of inert anode materials for aluminum electrolysis[J]. Light Met., 2007, (2): 27
[5] (王志刚, 黄蔚, 赖延清. 铝电解惰性阳极材料研究新进展[J]. 轻金属, 2007, (2): 27)
[6] Qiu Z X.Research and development of inert cathode and anode in aluminium electrolysis[J]. Light Met., 2001, (9): 30
[6] (邱竹贤. 铝工业应用新型电极材料的研究[J]. 轻金属, 2001, (9): 30)
[7] Sadoway D R.Inert anodes for the hall-héroult cell: The ultimate materials challenge[J]. JOM, 2001, 53(5): 34
[8] Ding H Y, Lu S G, Kan S R, et al.Progress in metal inert anode of aluminium electrolysis[J]. Chin. J. Rare Met., 2009, 33: 420
[8] (丁海洋, 卢世刚, 阚素荣等. 铝电解用金属惰性阳极的研究进展[J]. 稀有金属, 2009, 33: 420)
[9] Khramov А P, Kovrov V А, Zaikov Y P, et al.Anodic behaviour of the Cu82Al8Ni5Fe5 alloy in low-temperature aluminium electrolysis[J]. Corros. Sci., 2013, 70: 194
[10] Shi Z N, Xu J L, Qiu Z X.Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis[J]. JOM, 2003, 55(11): 63
[11] Zeng C L, Zhang J Q, Wu W T.Electrochemistry of corrosion in molten salts[J]. Corros. Sci. Prot. Technol., 1992, 4: 16
[11] (曾潮流, 张鉴清, 吴维?. 熔盐腐蚀电化学[J]. 腐蚀科学与防护技术, 1992, 4: 16)
[12] Zeng C L, Zhang J Q, Wu W T.Monitoring of cracking of oxide film during hot corrosion[J]. J. Chin. Soc. Corros. Prot., 1993, 13: 59
[12] (曾潮流, 张鉴清, 吴维?. 熔盐腐蚀过程中氧化膜破裂的监测[J]. 中国腐蚀与防护学报, 1993, 13: 59)
[13] Le Van K, Groult H, Lantelme F, et al.Electrochemical formation of carbon nano-powders with various porosities in molten alkali carbonates[J]. Electrochim. Acta, 2009, 54: 4566
[14] Zhang J Q, Niu Y, Wu W T.Electrochemical evaluation of corrosion resistance of metals and alloys in molten salts-polarization curve fitting[J]. J. Chin. Soc. Corros. Prot., 1990, 10: 207
[14] (张鉴清, 牛焱, 吴维?. 金属熔盐腐蚀的电化学评定方法——极化曲线拟合法[J]. 中国腐蚀与防护学报, 1990, 10: 207)
[15] Wang W, Zeng C L, Wu W T, et al.A study of hot corrosion behavior of Cu in molten (Li, K)2CO3[J]. Acta Metall. Sin., 1999, 35: 623
[15] (王文, 曾潮流, 吴维?等. Cu在熔融(Li, K)2CO3中的热腐蚀行为研究[J]. 金属学报, 1999, 35: 623)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[4] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[5] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[6] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[7] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[8] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[10] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[11] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[12] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[13] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[14] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[15] 宋久龙, 陈文革, 雷楠楠. T2铜及QCr0.5铜合金无铬复配钼酸盐钝化研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 210-218.