Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (1): 41-46    DOI: 10.11902/1005.4537.2016.172
  研究报告 本期目录 | 过刊浏览 |
液相等离子喷涂SrZrO3热障涂层工艺的研究
李新慧1,2,马文1,2(),尹轶川1,2,马伯乐1,2,白玉1,2,贾瑞灵1,2,董红英2,3
1 内蒙古工业大学材料科学与工程学院 呼和浩特 010051
2 内蒙古工业大学 内蒙古自治区薄膜与涂层重点实验室 呼和浩特 010051
3 内蒙古工业大学化工学院 呼和浩特 010051
Optimization of Preparation Process of Solution Precursor Plasma Spraying for SrZrO3 Thermal Barrier Coating
Xinhui LI1,2,Wen MA1,2(),Yichuan YIN1,2,Bole MA1,2,Yu BAI1,2,Ruiling JIA1,2,Hongying DONG2,3
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Key Laboratory of Thin Film and Coatings Technology, Inner Mongolia University of Technology,Hohhot 010051, China
3 School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
全文: PDF(841 KB)   HTML
摘要: 

采用液相等离子喷涂 (SPPS) 方法制备了SrZrO3热障涂层 (TBCs) 。采用田口实验法 (Taguchi method) 研究了喷涂电流、氩气流量、氢气流量等主要喷涂工艺参数对涂层沉积效率、硬度、显微结构、相稳定性的影响规律。分别采用XRD,SEM和显微硬度计研究了涂层的相组成、显微结构和硬度。结果表明:在喷涂距离、送液速率、雾化压力一定的情况下,当喷枪电流为600 A、氩气流量为40 L/min、氢气流量为10 L/min条件下,涂层的沉积效率最高,熔化程度最好,单遍喷涂厚度达到6.0 μm,涂层孔隙率为16.3%,硬度为6.8 GPa。相稳定性研究表明,1450 ℃下随着热处理时间的延长,涂层中t-ZrO2相逐渐向m-ZrO2相转变,SrZrO3相稳定性良好。

关键词 液相等离子喷涂热障涂层SrZrO3田口实验法    
Abstract

SrZrO3 thermal barrier coating was prepared by solution precursor plasma spraying (SPPS). Corresponding to Taguchi method, the relevant processing parameters were optimized in terms of the deposition efficiency, microhardness, microstructure and phase stability of the prepared coatings. The phase constitutes, microstructure and microhardness of the coatings were characterized by XRD, SEM and a microhardness tester, respectively. The experimental results showed that, in the case that the spray distance, feedstock flow rate and atomization pressure are given, the optimized spray parameters were set as follows: arc current, 600 A; argon flow rate, 40 L/min; hydrogen flow rate, 10 L/min. The SrZrO3 coating prepared with the optimized spray parameters had a single-pass coating thickness of 6.0 μm, porosity of 16.3%, and microhardness of 6.8 GPa. The results of phase stability analysis indicated that, the phase transition from t-ZrO2 to m-ZrO2 in the SrZrO3 coating emerged gradually at 1450 ℃ with increasing time, while the SrZrO3 phase did not change.

Key wordssolution precursor plasma spraying    thermal barrier coating    SrZrO3    Taguchi method
收稿日期: 2016-09-18     
基金资助:国家自然科学基金 (51462026和51672136) 及内蒙古自然科学基金 (2014MS0509)

引用本文:

李新慧,马文,尹轶川,马伯乐,白玉,贾瑞灵,董红英. 液相等离子喷涂SrZrO3热障涂层工艺的研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
Xinhui LI, Wen MA, Yichuan YIN, Bole MA, Yu BAI, Ruiling JIA, Hongying DONG. Optimization of Preparation Process of Solution Precursor Plasma Spraying for SrZrO3 Thermal Barrier Coating. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 41-46.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.172      或      https://www.jcscp.org/CN/Y2017/V37/I1/41

Process Torch currentA Argon flow rateLmin-1 Hydrogen flow rate / Lmin-1
1# A1 580 B1 35 C1 10
2# A2 600 B1 35 C2 12
3# A1 580 B2 40 C2 12
4# A2 600 B2 40 C1 10
表1  按照田口实验设计的可调节喷涂工艺参数
图1  不同工艺制备的SrZrO3涂层的XRD谱
图2  SrZrO3涂层在1450 ℃下热处理不同时间后的XRD谱
图3  4种不同工艺下所制备的SrZrO3涂层的截面形貌
图4  4种不同工艺所制备的SrZrO3涂层的表面形貌
图5  不同工艺对SrZrO3涂层沉积效率及显微硬度的影响
Control parameter Mean S/N ratio / dB
Level 1 Level 2 ? Rank
Arc current / A 12.22 14.90 2.68 2
Argon flow rate / Lmin-1 11.98 15.13 3.15 1
Hydrogen flow rate / Lmin-1 13.78 13.33 0.45 3
表2  喷涂参数对沉积效率影响的信噪比分析结果
Control parameter Mean S/N ratio / dB
Level 1 Level 2 ? Rank
Arc current / A 48.47 49.20 0.73 1
Argon flow rate / Lmin-1 48.62 49.06 0.44 2
Hydrogen flow rate / Lmin-1 49.02 48.66 0.36 3
表3  喷涂参数对涂层显微硬度影响的信噪比分析结果
图6  喷涂参数对涂层沉积效率与显微硬度影响的信噪比平均值趋势图
[1] Cao X Q.Thermal barrier coating[J]. Funct. Mater. Inform., 2007, 4(5): 55
[1] (曹学强. 热障涂层材料[J]. 功能材料信息, 2007, 4(5): 55)
[2] Choi C J, LeeJ K, Kwac L K, et al. Development of advance thermal barrier coating in gas turbine [J]. Adv. Mater. Res., 2010, 123-125: 459
[3] Vassen R, Tietz F, Kerkhoof G, et al.New materials for advanced thermal barrier coatings [A]. Proceedings of the 6th Liége Conference on Materials for Advanced Power Engineering[C]. Belgium: Forschungszentrum Juelich GmbH, 1998: 1627
[4] Thornton J, Majumdar A.Ceria precipitation and phase stability in zirconia based thermal barrier coatings [A]. Proceedings of 14th International Thermal Spray Conference: Thermal Spray-Current Status and Future Trends[C]. Material Park: ASM International, 1995: 1075
[5] Zhu D M, Miller R A.Hafnia-based materials developed for advanced thermal/environmental barrier coating applications [R]. NASA Report TM-2005-192261. Cleveland:NASA, 2004
[6] Suresh G, Seenivasan G, Krishnaiah M V, et al.Investigation of the thermal conductivity of selected compounds of lanthanum, samarium and europium[J]. J. Alloys Compd., 1998, 269: L9
[7] Lehmann H, Pitzer D, Pracht G, et al.Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system[J]. J. Am. Ceram. Soc., 2003, 86: 1338
[8] St?ver D, Pracht G, Lehmann H, et al.New material concepts for the next generation of plasma-sprayed thermal barrier coatings[J]. J. Therm. Spray Technol., 2004, 13: 76
[9] Vaβen R, Traeger F, St?ver D.New thermal barrier coatings based on pyrochlore/YSZ double-layer systems[J]. Int. J. Appl. Ceram. Technol., 2004, 1: 351
[10] Padture N P, Klemens P G.Low thermal conductivity in garnets[J]. J. Am. Ceram. Soc., 1997, 80: 1018
[11] Sudre O, Cheung J, Marshall D, et al.Thermal insulation coatings of LaPO4 [A]. Proceedings of the 25th Annual International Conference on Composites, Advance Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings[C]. Hoboken: John Wiley & Sons, Inc., 2001: 367
[12] Gadow R, Lischka M. Lanthanum hexaaluminate-novel thermal barrier coatings for gas turbine applications-materials and process development [J]. Surf. Coat. Technol., 2002, 151/152: 392
[13] Ma W, Gong S K, Xu H B, et al.The thermal cycling behavior of lanthanum-cerium oxide thermal barrier coating prepared by EB-PVD[J]. Surf. Coat. Technol., 2006, 200: 5113
[14] Cao X, Vassen R, Fischer W, et al.Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications[J]. Adv. Mater., 2003, 15: 1438
[15] Ma W, Mack D E, Vaβen R, et al.Perovskite-type strontium zirconate as a new material for thermal barrier coatings[J]. J. Am. Ceram. Soc., 2008, 91: 2630
[16] Jarligo M O, Mack D E, Vassen R, et al.Application of plasma-sprayed complex perovskites as thermal barrier coatings[J]. J. Therm. Spray Technol., 2009, 18: 187
[17] Xie L D, Ma X Q, Ozturk A, et al.Processing parameter effects on solution precursor plasma spray process spray patterns[J]. Surf. Coat. Technol., 2004, 183: 51
[18] Gell M, Xie L D, Ma X Q, et al. Highly durable thermal barrier coatings made by the solution precursor plasma spray process [J]. Surf. Coat. Technol., 2004, 177/178: 97
[19] Xie L D, Ma X Q, Jordan E H, et al.Identification of coating deposition mechanisms in the solution-precursor plasma-spray process using model spray experiments[J]. Mater. Sci. Eng., 2003, A362: 204
[20] Sampath S, Jiang X Y, Matejicek J, et al.Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I: Case study for partially stabilized zirconia[J]. Mater. Sci. Eng., 1999, A272: 181
[21] Jadhav A, Padture N P, Wu F, et al.Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray[J]. Mater. Sci. Eng., 2005, A405: 313
[22] Jadhav A D, Padture N P, Jordan E H, et al.Low-thermal-conductivity plasma-sprayed thermal barrier coatings with engineered microstructures[J]. Acta Mater., 2006, 54: 3343
[23] Guo S Q, Kagawa Y.Effect of thermal exposure on hardness and Young's modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings[J]. Ceram. Inter., 2006, 32: 263
[24]
[25] Feng J.Study on microstructure, phase composition and the capacitance characteristics of YSZ thermal barrier coatings prepared by APS [D]. Dalian: Dalian Maritime University, 2013
[25] (冯健. 大气等离子喷涂YSZ热障涂层微观组织、相组成及电容特性的研究 [D]. 大连:大连海事大学, 2013)
[26] Jadhav A, Padture N P, Wu F, et al.Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray[J]. Mater. Sci. Eng., 2005, A405: 313
[27] Gell M, Jordan E H, Teicholz M, et al.Thermal barrier coatings made by the solution precursor plasma spray process[J]. J. Therm. Spray Technol., 2008, 17: 124
[28] Jordan E H, Jiang C, Gell M.The solution precursor plasma spray (SPPS) process: A review with energy considerations[J]. J. Therm.Spray Technol., 2015, 24: 1153
[29] Du G S, Li D X, Wei Z P.Optimization of the column chromatography separation of mono-and di-TPGS by Taguchi method[J]. Chem. Reag., 2014, 36: 79
[29] (杜广盛, 李德馨, 魏振平. 田口实验设计法优化TPGS单酯与双酯的柱层析分离工艺[J]. 化学试剂, 2014, 36: 79)
[30] Man Y M, Gong J W, Chen H Y, et al.Design optimization of control parameters for strapdown line-of-sight stable tracking platform based on the Taguchi method [A]. Proceedings of the Chinese Control and Decision Conference[C]. Guilin: IEEE, 2009: 2167
[1] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[2] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[3] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[4] 蔡丽丽,马文,李新慧,尹轶川,马伯乐,白玉,王俊,董红英. (Gd0.7Sr0.3)ZrO3.35涂层的CaO-MgO-Al2O3-SiO2(CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[5] 张珊榕,董红英,马文,尹轶川,李新慧,白玉,贾瑞灵. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[6] 陈琛, 郭洪波, 宫声凯. 横向梯度温度场下热障涂层的失效分析[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[7] 李美姮; 管恒荣 . 热障涂层的性能评价[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[8] 李云端; 张春霞; 宫声凯; 徐惠彬 . 单面沉积热障涂层失效模式的研究[J]. 中国腐蚀与防护学报, 2006, 26(3): 146-151 .
[9] 邓畅光; 邝子奇 . 稀土硅铁对TBCs梯度热障涂层组织与性能影响的研究[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[10] 陈和兴; 金展鹏; 周克崧 . 热障涂层中NiCrAlY-ZrO2界面特性的研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 95-97 .
[11] 毕晓日方; 郭洪波; 宫声凯; 徐惠彬 . 电子束物理气相沉积热障涂层抗高温腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 84-87 .
[12] 李美桓; 孙晓峰; 宫声凯; 张重远; 管恒荣; 胡望宇; 胡壮麒 . EB-PVD热障涂层高温氧化过程中的显微结构和相分析[J]. 中国腐蚀与防护学报, 2002, 22(2): 105-110 .
[13] 张重远; 李美恒; 孙晓峰 . 单晶高温合金热障涂层的循环氧化行为[J]. 中国腐蚀与防护学报, 2002, 22(2): 111-114 .