Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (1): 74-80    DOI: 10.11902/1005.4537.2016.154
  研究报告 本期目录 | 过刊浏览 |
燃油火场环境中助燃剂的快速检验方法研究
谢冬柏1(),单国2
1 中国刑事警察学院 痕迹检验鉴定技术公安部重点实验室 沈阳 110854
2 新疆警察学院刑事科学技术系 乌鲁木齐 830011
Rapid Identification of Liquid Accelerant in Fire Scene Environment
Dongbai XIE1(),Guo SHAN2
1 Key Laboratory of Impression Evidence Examination and Identification Technology, National Police University of China, Shenyang 110854, China
2 Department of Forensic Science, Xinjiang Police College, Urumqi 830011, China
全文: PDF(1233 KB)   HTML
摘要: 

使用火场环境模拟设备对工业纯Cu及Q235钢在600,700及800 ℃条件下的火场燃烧环境进行暴露,通过光学显微镜对其表面的氧化物层进行观察,重点分析表面氧化层剥落特点及其原因。结果表明:与相同温度空气中暴露相比,火场燃烧环境进行暴露后两种金属材料表面的氧化物层厚度成倍增加,冷却至室温后为层状,而且有大量的开裂区域存在;工业纯Cu在煤油气氛环境中的氧化性能变化更为明显,表面氧化膜的粘附性严重蜕化,在整个实验过程中均发生明显的剥落;Q235钢在高温煤油燃烧环境气氛中生成的氧化物层粘附性和表面颜色显著不同,这与其所处环境中的气体成分密切相关。以上研究结果可为火灾现场的温度、燃烧时间及是否有助燃剂的加入提供初步的判断依据。

关键词 火场环境助燃剂检验金属高温氧化    
Abstract

Oxidation tests of Cu and Q235 steel were conducted in air alone and a combustion atmosphere of kerosene-air mixture at 600, 700 and 800 ℃ respectively, the later aims to simulate the fire scene environment with the presence of fuel accelerant. Cracking and spallation of the formed oxide scales were observed by using optical microscopy. The results revealed that the existence of kerosene accelerated the oxidation of Cu and Q235, and changed the surface morphologies of the oxide scales. With the increasing temperature and time, serious spallation of the oxide scales was observed. Especially, due to the spallation of the oxide scale formed on Cu, the mass loss of Cu did occurr. Based on the features of the oxide scales formed on Cu and Q235, it is expected to offer complementary insight on determining the fire characteristics, such as exposure temperature, time period and whether liquid accelerant is involved.

Key wordsfire scene    accelerant    identification    metallic material    high temperature oxidation
收稿日期: 2016-09-10     
基金资助:新疆高等学校重点项目(XJEDU2014I050)

引用本文:

谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
Dongbai XIE, Guo SHAN. Rapid Identification of Liquid Accelerant in Fire Scene Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 74-80.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.154      或      https://www.jcscp.org/CN/Y2017/V37/I1/74

图1  模拟燃油火场实验用管式炉
Material C Mn Si S P Fe Cu Ni Si Others
Q235 0.15 0.30 0.30 0.045 0.045 Bal. --- --- --- ---
Cu --- --- --- --- 0.0007 0.0008 99.96 0.0002 0.0004 0.0379
表1  Q235钢及工业纯Cu的化学成分
图2  Cu在600 ℃空气和煤油燃烧环境中分别氧化30和60 min后的表面形貌
图3  Cu在700 ℃空气和煤油燃烧环境中分别氧化30和60 min后的表面形貌
图4  Cu在800 ℃空气和煤油燃烧气氛中氧化60 min后的表面形貌
图5  Q235钢在600 ℃空气和煤油燃烧环境中分别氧化30和60 min后的表面形貌
图6  Q235钢在700 ℃空气和煤油燃烧环境中分别氧化30和60 min后的表面形貌
图7  Q235钢在800 ℃空气和煤油燃烧环境中分别氧化30和60 min后的表面形貌
[1] Xu L, Zhang H P, Yang Y, et al.Study on fire design in performance-based design[J]. Eng. Sci., 2004, 6(1): 64
[1] (徐亮, 张和平, 杨昀等. 性能化防火设计中火灾场景设置初步研究[J]. 中国工程科学, 2004, 6(1): 64)
[2] Stauffer E, Byron D.Alternative fuels in fire debris analysis: Biodiesel basics[J]. J. Forensic Sci., 2007, 52: 371
[3] Benajes J, Molina S, Martín J, et al.Effect of advancing the closing angle of the intake valves on diffusion-controlled combustion in a HD diesel engine[J]. Appl. Therm. Eng., 2009, 29: 1947
[4] Huang Y, Yang V.Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Prog. Energy Combust. Sci., 2009, 35: 293
[5] Xie D B, Shan G, Deng S, et al.Investigations on oxidation and microstructure evolution of pure Cu in simulated air-kerosene combustion atmospheres[J]. Fire Mater., 2016, doi: 10.1002/fam.2395
[6] Li H, Luo C H.The oxidation of copper at 200~900 ℃[J]. Acta Metall. Sin., 1965, 8: 311
[6] (李薰, 骆继动. 铜在200~900 ℃的氧化[J]. 金属学报, 1965, 8: 311)
[7] Huang W D, Zhang Y Z.Microstructure analysis of Cu-Y alloy at high temperature[J]. Chin. Rare Earths, 1991, 12(6): 63
[7] (黄文德, 张玉柱. Cu-Y合金高温氧化膜组织结构分析[J]. 稀土, 1991, 12(6): 63)
[8] Sheasby J S, Boggs W E, Turkdogan E T.Scale growth on steels at 1200 ℃: Rationale of rate and morphology[J]. Met. Sci., 1984, 18: 127
[9] Iordanova L, Surtchev M, Forcey K S, et al.High-temperature surface oxidation of low-carbon rimming steel[J]. Surf. Interface Anal., 2000, 30: 158
[10] Evans H E. Cracking and spalling of protective oxide layers [J]. Mater. Sci. Eng., 1989, A120/121: 139
[11] Evans H E, Lobb R C.Conditions for the initiation of oxide-scale cracking and spallation[J]. Corros. Sci., 1984, 24: 209
[12] Li M S.High Temperature Oxidation of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 45
[12] (李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 45)
[13] Dehaan J D, Bonarius K.Pyrolysis products of structure fires[J]. J. Forensic Sci. Soc., 1988, 28: 299
[14] Yoon J K, Thakre P, Yang V.Modeling of RDX/GAP/BTTN pseudo-propellant combustion[J]. Combust. Flame, 2006, 145: 300
[15] Fryburg G C, Miller R A, Kohl F J, et al.Volatile products in the corrosion of Cr, Mo, Ti and four superalloys exposed to O2 containing H2O and gaseous NaCl[J]. J. Electrochem. Soc., 1977, 124: 1738
[16] Cheng X W, Zheng Y J, Monaghan B J, et al.Breakaway oxidation behaviour of ferritic stainless steels at 1150 ℃ in humid air[J]. Corros. Sci., 2016, 108: 11
[17] Lv J L, Liang T X, Luo H Y.Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel[J]. Nucl. Eng. Des., 2016, 309: 1
[1] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[2] 周然, 张晓蕾, 李祥锋, 凌爱军, 杜建港. 海上压力容器腐蚀行为的风险与检验研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 592-598.
[3] 蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考[J]. 中国腐蚀与防护学报, 2020, 40(3): 205-214.
[4] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[5] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[6] 刘威, 杜开发, 胡晓宏, 汪的华. 液态金属储能电池中常用液态金属腐蚀研究进展[J]. 中国腐蚀与防护学报, 2020, 40(2): 81-86.
[7] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[8] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[9] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[10] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[11] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[12] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[13] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[15] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.