Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (1): 16-22    DOI: 10.11902/1005.4537.2016.150
  研究报告 本期目录 | 过刊浏览 |
316不锈钢在添加微量稀土元素硝酸熔盐中腐蚀行为研究
朱明(),周嘏玥,张慧慧
西安科技大学材料科学与工程学院 西安 710054
Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element
Ming ZHU(),Guyue ZHOU,Huihui ZHANG
College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
全文: PDF(913 KB)   HTML
摘要: 

采用电化学方法研究了316不锈钢在添加1‰ (质量分数) 和2‰Y2O3的熔盐中的腐蚀行为,采用SEM/EDS分析了腐蚀产物的形貌和物相组成。结果表明:添加Y2O3可以降低不锈钢的腐蚀速率,添加1‰和2‰的Y2O3,其腐蚀电流密度由9.47 mAcm-2分别降至7.13和3.73 mAcm-2。电化学阻抗测试结果表明,316不锈钢在熔融含稀土氧化物的三元硝酸盐中电荷转移电阻值升高,因此耐蚀性得以提高。

关键词 电化学316不锈钢三元硝酸盐稀土元素腐蚀    
Abstract

Ternary nitrate salts are widely used as thermal storage medium for solar thermal power generation system, but the corrosion damage of the heat storage pipe caused by the molten nitrate salts is significantly severe. In order to improve the corrosion resistance of the pipeline material, the corrosion behavior of 316 stainless steel in mixed molten nitrate-salts KNO3-NaNO2-NaNO3 without and with addition of 1‰ (mass fraction) and 2‰Y2O3 was comparatively studied by means of electrochemical method and SEM/EDS. The results showed that the addition of Y2O3 can reduce the corrosion rate of stainless steel. The corrosion current density decreased from 9.47 mAcm-2 to 7.13 and 3.73 mAcm-2 respectively with the addition of 1‰ and 2‰Y2O3 and correspondingly, the transfer resistance of 316 stainless steel in mixed molten nitrate salts was enhanced. It can be concluded that the addition of trace of rare earth element is an effective way to improve the corrosion resistance of 316 stainless steel in the mixed molten nitrate salts.

Key wordselectrochemistry    316 stainless steel    ternary nitrate salt    rare earth element    corrosion
收稿日期: 2016-09-09     
基金资助:国家自然科学基金 (51201131),西安科技大学培育基金(6310214005)和西安科技大学博士启动金(6310115012)

引用本文:

朱明,周嘏玥,张慧慧. 316不锈钢在添加微量稀土元素硝酸熔盐中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 16-22.
Ming ZHU, Guyue ZHOU, Huihui ZHANG. Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 16-22.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.150      或      https://www.jcscp.org/CN/Y2017/V37/I1/16

图1  316不锈钢在450 ℃三元硝酸盐中的动电位极化曲线
Molten nitrate ba / mVdec-1 bc / mVdec-1 Ecorr / mV Icorr / mAcm-2
HITEC+1‰Y2O3 603.11 -1519.2 -22.54 3.73
HITEC+2‰Y2O3 651.67 -1499.6 -98.04 7.13
HITEC 711.99 -1493.5 -19.70 9.47
表1  316不锈钢在添加不同比例Y2O3的三元硝酸熔盐中的极化曲线拟合结果
图2  316不锈钢在450 ℃混合硝酸盐中的腐蚀电化学阻抗Nyquist图和Bode图
图3  316不锈钢在450 ℃添加1‰Y2O3的混合硝酸盐中的腐蚀电化学阻抗Nyquist图和Bode图
图4  316不锈钢在450 ℃添加2‰Y2O3的混合硝酸盐中的腐蚀电化学阻抗Nyquist图和Bode图
图5  EIS数据拟合等效电路图
Time / h Rs / Ωcm2 C / Fcm-2 Rt / Ωcm2 Y0,dl / sαΩ-1cm-2 n Ra / Ωcm2
5 1.11 1.02×10-2 313.2 4.18×10-4 0.75 572.0
11 1.11 1.02×10-2 286.8 4.41×10-4 0.74 691.8
46 1.2 8.39×10-3 295.2 4.15×10-4 0.74 789.8
54 1.27 7.40×10-3 221.3 5.09×10-4 0.72 742.9
77 1.26 6.45×10-3 207.6 5.17×10-4 0.72 812.8
100 1.26 1.16×10-4 155.3 2.61×10-3 0.60 421.2
表2  316不锈钢在硝酸熔盐中的EIS拟合结果
Time / h Rs / Ωcm2 C / Fcm-2 Rt / Ωcm2 Y0,dl / sαΩ-1cm-2 n Ra / Ωcm2
2 1.27 1.62×10-3 665.6 9.47×10-5 0.63 30.28
15 1.32 7.08×10-4 538.3 5.79×10-3 0.72 178.50
35 1.55 8.03×10-4 654.0 7.03×10-4 0.71 52.00
55 1.31 8.32×10-4 438.1 1.24×10-2 0.70 729.90
75 1.34 1.40×10-2 406.2 7.42×10-4 0.71 711.00
136 1.24 7.27×10-4 413.1 1.41×10-2 0.71 621.70
表3  316不锈钢在添加1‰Y2O3的硝酸熔盐中的EIS拟合结果
Time / h Rs / Ωcm2 C / Fcm-2 Rt / Ωcm2 Y0,dl / snΩ-1cm-2 n Ra / Ωcm2
4 1.10 1.01×10-2 301.5 4.77×10-4 0.71 431.7
40 1.20 7.95×10-3 253 3.98×10-4 0.76 505.2
105 1.11 1.64×10-2 374.3 7.10×10-4 0.73 550.9
110 1.24 1.50×10-2 358.5 6.98×10-4 0.73 529.2
130 1.11 1.90×10-2 379.1 7.11×10-4 0.73 481.7
140 1.19 1.81×10-2 413.9 7.28×10-4 0.73 516.6
表4  316不锈钢在添加2‰Y2O3的硝酸熔盐中的EIS拟合结果
图6  316不锈钢在含不同比例Y2O3的混合硝酸盐中Rt与腐蚀时间的关系
图7  316不锈钢在450 ℃下硝酸熔盐中腐蚀150 h后的截面形貌和EDS结果
[1] Fernández A G, Cortes M, Fuentealba E, et al.Corrosion properties of a ternary nitrate/nitrite molten salt in concentrated solar technology[J]. Renew. Energy, 2015, 80: 177
[2] Vignarooban K, Xu X H, Arvay A, et al.Heat transfer fluids for concentrating solar power systems-A review[J]. Appl. Energy, 2015, 146: 383
[3] Shen X Y, Ding J, Peng Q, et al.Application of high temperature molten salt to solar thermal power[J]. Guangdong Chem. Ind., 2007, 34(11): 49
[3] (沈向阳, 丁静, 彭强 等. 高温熔盐在太阳能热发电中的应用 [J]. 广东化工, 2007, 34(11): 49)
[4] Yang X P, Yang X X, Ding J, et al.Recent advances in the study of solar energy high-temperature heat power generation and accumulation technologies[J]. J. Eng. Therm. Energ. Power, 2011, 26(1): 1
[4] (杨小平, 杨晓西, 丁静等. 太阳能高温热发电蓄热技术研究进展[J]. 热能动力工程, 2011, 26(1): 1)
[5] Vignarooban K, Xu X, Arvay A, et al.Heat transfer fluids for concentrating solar power system-A review[J]. Appl. Energy, 2015,146: 396
[6] Cheng W J, Chen D J, Wang C J.High-temperature corrosion of Cr-Mo steel in molten LiNO3-NaNO3-KNO3 eutectic salt for thermal energy storage[J]. Sol. Energy Mater. Sol. Cell., 2015, 132: 563
[7] Fernández A G, Galleguillos H, Fuentealba E, et al.Corrosion of stainless steels and low-Cr steel in molten Ca(NO3)2-NaNO3-KNO3 eutectic salt for direct energy storage in CSP plants[J]. Sol. Energy Mater. Sol. Cell., 2015, 141: 7
[8] Kruizenga A, Gil D.Corrosion of iron stainless steels in molten nitrate salt[J]. Energy Procedia., 2014, 49: 878
[9] Fernández A G, Lasanta M I, Pérez F J.Molten salt corrosion of stainless steels and low-Cr steel in CSP plants[J]. Oxid. Met., 2012, 78: 329
[10] McConohy G, Kruizenga A. Molten nitrate salts at 600 and 680 ℃: Thermophysical property changes and corrosion of high-temperature nickel alloys[J]. Sol. Energy, 2014, 103: 242
[11] Fernández A G, Grágeda M, Galleguillos H.Impurity influence in physico-chemical and corrosion properties of Chilean solar nitrates[J]. Energy Procedia., 2014, 49: 607
[12] Shin D, Banerjee D.Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. Int. J. Heat Mass Transf., 2015, 84: 898
[13] Tiznobaik H, Shin D.Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. Int. J. Heat Mass Transf.,2013, 57: 542
[14] Ma H F.Study on corrosion behaviors and protection of Inconel 625 alloys in chloride molten salts [D]. Xi'an: Xi'an University of Science and Technology, 2015
[14] (马宏芳. Inconel625合金在氯化物熔盐中腐蚀行为研究 [D]. 西安: 西安科技大学, 2015)
[15] Wang Z H, Zhu M, Wang M J, et al.Corrosion behavior of Inconel 625 alloy in molten carbonate[J]. Rare Met. Mater. Eng., 2016, 45: 677
[15] (王志华, 朱明, 王明静等. Inconel 625合金在熔融碳酸盐中的腐蚀行为[J]. 稀有金属材料与工程, 2016, 45: 677)
[16] Niu Y, Zhang J Q, Wu W T.Characters of porcelain reference electrode in molten salts[J]. J. Chin. Soc. Corros. Prot., 1990, 10(3): 221
[16] (牛焱, 张鉴清, 吴维?. 用于高温熔盐的参比电极[J]. 中国腐蚀与防护学报, 1990, 10(3): 221)
[17] Wang F P, Kang W L, Jing H M, et al.The Theory, Method and Application of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2008: 220
[17] (王凤平, 康万利, 敬和民等. 腐蚀电化学原理、方法及应用 [M]. 北京: 化学工业出版社, 2008: 220)
[18] Zeng C L, Wang W, Wu W T.Electrochemical impedance models for molten salt corrosion[J]. Corros. Sci., 2001, 43: 787
[19] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002: 20
[19] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002: 20)
[20] Liu Y L, Chen S Q, Huang G B, et al.Study on hot corrosion behavior of stainless steel in molten nitrate salt[J]. Guangdong Chem. Ind., 2016, 44(2): 1
[20] (刘义林, 陈素清, 黄国波等. 硝酸熔盐对不锈钢材料腐蚀行为的研究[J]. 广东化工, 2016, 44(2): 1)
[21] Wang M J, Xin R S, Long S S, et al.Oxidation behavior of 316LN stainless steel at solution state[J]. Trans. Mater. Heat Treat., 2012, 33(8): 74
[21] (王明家, 信瑞山, 龙珊珊等. 固溶态316LN不锈钢的氧化行为[J]. 材料热处理学报, 2012, 33(8): 74)
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[12] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[15] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.