Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (1): 63-68    DOI: 10.11902/1005.4537.2016.149
  研究报告 本期目录 | 过刊浏览 |
304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究
沈杰1,刘卫2,王铁钢3,潘太军1,2()
1 常州大学材料科学与工程学院 江苏省材料表面技术重点实验室 常州 213164
2 中国科学院上海应用物理研究所 上海 201800
3 天津职业技术师范大学 天津市高速切削与精密加工重点实验室 天津 300222
Corrosion and Conductivity Behavior of TiN Coating on 304 Stainless Steel Bipolar Plates
Jie SHEN1,Wei LIU2,Tiegang WANG3,Taijun PAN1,2()
1 School of Material Science and Engineering, Jiangsu Key Laboratory of Material Surface Technology, Changzhou University, Changzhou 213164, China
2 Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
3 Tianjin Key Laboratory of High Speed Cutting and Precision Processing, Tianjin University of Technology and Education, Tianjin 300222, China
全文: PDF(746 KB)   HTML
摘要: 

采用等离子喷涂技术在304不锈钢表面沉积TiN涂层,研究其在燃料电池环境中的腐蚀和导电性能。采用XRD和SEM对涂层组织结构和微观形貌进行了表征,通过动电位极化曲线、电化学阻抗谱技术比较了涂层与基体在模拟电池环境中 (0.3 mol/L H2SO4+2 mg/L HF) 的耐蚀性,并测定了接触电阻。结果表明:涂层的自腐蚀电位显著高于基体的,且腐蚀电流密度下降近1个数量级,这与所制备厚约20 μm涂层的均匀致密性有关。在360 h浸泡过程中,涂层的开路电位显著高于基体,稳定性良好,虽阻抗随时间有所降低,但仍维持较高值,涂层能够对基体提供有效保护。在138 Ncm-2压力下,TiN涂层的接触电阻为50 mΩcm-2,低于基体的,表现出更优越的导电性能。

关键词 304不锈钢双极板等离子喷涂TiN涂层耐蚀性    
Abstract

TiN coating was prepared on the surface of 304 stainless steel by plasma spraying technology. The microstructure and phase composition of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion performance of the 304 stainless steel without and with TiN coating was assessed by the potentiodynamic polarization and electrochemical impedance in the simulated proton exchange membrane fuel cell solutions containing 0.3 mol/L H2SO4 plus 2 mg/L HF. Moreover, electrical conductivity of them was also compared. The results indicated that TiN coating significantly increased the free corrosion potential of the steel and induced a decrease of the corresponding corrosion current density by one order of magnitude, which is attributed to the presence of the continuous and compact coating of about 20 μm in thickness. During the whole period of 360 h immersion, the open circuit potential of the coating was obviously higher than that of the bare substrate, suggesting the excellent stability of coating. The impedance of the coating decreased slightly with immersion time but still remained in high level, suggesting that the TiN coating could provide the effective protection for the substrate. The interface contact resistance of the TiN coating was about 50 mΩcm-2 by an applied load of 138 Ncm-2, obviously smaller than that of the bare 304 stainless steel, exhibiting better conductivity.

Key words30 stainless steel bipolar plate    plasma spraying    TiN coating    corrosion resistance
收稿日期: 2016-09-09     
基金资助:国家自然科学基金项目 (51101023和51301181),江苏省产学研项目 (BY2016029-07),常州市科技项目(CF20140004) 和天津市应用基础与前沿技术研究计划重点项目 (15JCZDJC39700)

引用本文:

沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
Jie SHEN, Wei LIU, Tiegang WANG, Taijun PAN. Corrosion and Conductivity Behavior of TiN Coating on 304 Stainless Steel Bipolar Plates. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 63-68.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.149      或      https://www.jcscp.org/CN/Y2017/V37/I1/63

图1  等离子喷涂TiN涂层的XRD谱
图2  等离子喷涂TiN涂层的截面微观形貌
图3  TiN涂层与304不锈钢基体在模拟PEMFC环境中的极化曲线
Sample Ecorr
VSCE
Icorr
Acm-2
ba
mV
bc
mV
Vcorr
mma-1
Rp
Ωcm2
304ss substrate -0.552 1.21×10-4 421.90 162.82 1.099 422.14
TiN coating -0.305 5.43×10-5 543.36 178.58 0.511 1076.20
表1  拟合获得的动电位极化曲线电化学参数
图4  TiN涂层与304不锈钢基体在模拟PEMFC环境中的开路电位-时间曲线
图5  304不锈钢基体在模拟PEMFC环境中浸泡不同时间的电化学阻抗谱
图6  304不锈钢和TiN涂层拟合电化学阻抗谱的等效电路图
Time / h Rs / Ωcm2 Yf / Ω-1cm-2S-n nf Rf / Ωcm2 Ydl / Ω-1cm-2S-n ndl Rt / Ωcm2
2 5.07 1.465×10-5 0.63 386.0 2.680×10-3 0.86 508.1
8 5.71 1.448×10-4 0.78 439.0 1.648×10-3 0.88 617.7
24 5.69 7.704×10-5 0.77 458.5 1.493×10-3 0.88 708.3
48 5.69 5.589×10-5 0.76 474.3 1.374×10-3 0.88 737.2
72 5.50 3.061×10-3 0.85 427.7 4.408×10-3 0.84 489.4
表2  304不锈钢基体在模拟PEMFC环境中电化学阻抗谱参数拟合结果
图7  TiN涂层在模拟PEMFC环境中浸泡不同时间的电化学阻抗谱
Time / h Rs / Ωcm2 Yf / Ω-1cm-2S-n nf Rf / Ωcm2
3 19.66 3.510×10-4 0.88 8.952×104
24 18.24 3.124×10-4 0.90 1.521×105
96 18.27 2.860×10-4 0.91 2.714×105
190 16.76 2.976×10-4 0.91 4.634×105
254 17.45 2.428×10-4 0.89 6.974×105
362 14.90 3.091×10-4 0.92 3.349×104
表3  TiN涂层在模拟PEMFC环境中电化学阻抗谱参数拟合结果
图8  304不锈钢基体与TiN涂层的接触电阻随压力的变化
[1] Ren Y J, Zhang C R, Liu G M, et al.A review on corrosion and protection of metallic bipolar plates for proton exchange membrane fuel cell[J]. Corros. Sci. Prot. Technol., 2009, 21: 388
[1] (任延杰, 张春荣, 刘光明等. 质子交换膜燃料电池金属双极板的腐蚀与表面防护研究进展[J]. 腐蚀科学与防护技术, 2009, 21: 388)
[2] Pan T J, Zuo X W, Wang T, et al.Electrodeposited conductive polypyrrole/polyaniline composite film for the corrosion protection of copper bipolar plates in proton exchange membrane fuel cells[J]. J. Power Sources, 2016, 302: 180
[3] Zhang H F, Yi B L, Hou M, et al.Materials for bipolar plates in proton-exchange membrane fuel cells and their preparation[J]. Chin. J. Power Sources, 2003, 27(2): 129
[3] (张海峰, 衣宝廉, 侯明等. 质子交换膜燃料电池双极板的材料与制备[J]. 电源技术, 2003, 27(2): 129)
[4] Pan T J, Zhang B, Li J, et al.An investigation on corrosion protection of chromium nitride coated Fe-Cr alloy as a bipolar plate material for proton exchange membrane fuel cells[J]. J. Power Sources, 2014, 269: 81
[5] Pan T J, Chen Y, Zhang B, et al.Corrosion behavior of niobium coated 304 stainless steel in acid solution[J]. Appl. Surf. Sci., 2016, 369: 320
[6] Nikam V V, Reddy R G, Collins S R, et al.Corrosion resistant low temperature carburized SS 316 as bipolar plate material for PEMFC application[J]. Electrochim. Acta, 2008, 53: 2743
[7] Feng K, Wu G, Li Z, et al.Corrosion behavior of SS316L in simulated and accelerated PEMFC environments[J]. Int. J. Hydrog. Energy, 2011, 36: 13032
[8] Li M C, Luo S Z, Zeng C L, et al.Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments[J]. Corros. Sci., 2004, 46: 1369
[9] Ren Y J, Zeng C L.Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process[J]. J. Power Sources, 2007, 171: 778
[10] Wang Y, Northwood D O.An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments[J]. Int. J. Hydrog. Energy, 2007, 32: 895
[11] Wang H, Sweikart M A, Turner J A.Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells[J]. J. Power Sources, 2003, 115: 243
[12] Xia M, Wang Z H, Bo F, et al.Research progress of reactive plasma sprayed TiN coating[J]. Surf. Technol., 2015, 44(8): 1
[12] (夏铭, 王泽华, 柏芳等. 反应等离子喷涂TiN涂层的研究进展[J]. 表面技术, 2015, 44(8): 1)
[13] Qian Y, Xu J.Properties of Zr nanocrystalline coating on Ti alloy bipolar plates in simulated PEMFC environments[J]. Acta Phys.-Chim. Sin., 2015, 31: 291
[13] (钱阳, 徐江. 钛合金双极板表面纳米晶Zr涂层在质子交换膜燃料电池环境中的性能[J]. 物理化学学报, 2015, 31: 291)
[14] Yuan L, Wang H M.Corrosion behaviors of a γ-toughened Cr13Ni5Si2/Cr3Ni5Si2, multi-phase ternary metal silicide alloy in NaCl solution[J]. Electrochim. Acta, 2008, 54: 421
[15] You H X, He G L, Ding X W, et al.state of PEMFC metal bipolar plate materials[J]. J. Chin. Soc. Corros. Prot., 2003, 23: 375
[15] (由宏新, 何广利, 丁信伟等. 质子交换膜燃料电池金属双极板材料研究进展[J]. 中国腐蚀与防护学报, 2003, 23: 375)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[11] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[12] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[13] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[14] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[15] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.