Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (5): 411-420    DOI: 10.11902/1005.4537.2016.147
  研究报告 本期目录 | 过刊浏览 |
添加纳米CeO2对聚氨酯涂层防腐性能的影响
蔡光义1,王浩伟2,赵苇杭1,董泽华1()
1 华中科技大学化学与化工学院 材料服役失效湖北省重点实验室 武汉 430074
2 中航工业特种飞行器研究所 荆门 448000
Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating
Guangyi CAI1,Haowei WANG2,Weihang ZHAO1,Zehua DONG1()
1 Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 AVIC Special Vehicle Research Institute, Jingmen 448000, China
全文: PDF(1325 KB)   HTML
摘要: 

采用盐雾和盐水浸泡加速实验,结合ATR-FTIR,SEM,AFM表面分析技术及EIS电化学分析技术,考察纳米CeO2作为涂层颜料对聚氨酯涂层防腐性能的影响。结果表明,添加纳米CeO2能改善涂层的防腐性能,延缓聚氨酯涂层的阻抗衰减进程,但同时会削弱涂层在金属基体上的附着力。当添加量较低时 (≤0.5%,质量分数),由于H2O和侵蚀性离子渗入聚氨酯层,纳米CeO2水解流失,导致涂层阻抗谱随时间降低较快;当添加量达到1.0%时,涂层阻抗在较长时间内保持较高值,这可能是由于纳米CeO2在涂层微孔中发生水解膨胀,压缩了孔隙通道,同时Ce (III,IV) 迁移到铝合金/涂层界面,抑制了腐蚀活性位点,因而减缓了阻抗的衰减进程。然而,在盐雾实验后期,CeO2进一步水解会导致Ce4+的溶解流失,造成微孔隙的再次疏通和涂层阻抗的快速下降。过量添加 (>1.0%) 还会削弱涂层在铝合金基体上的附着力。长期浸泡实验结果表明:添加1.0%CeO2可基本实现Ce4+溶解和流失的平衡,增强聚氨酯涂层的防腐性能。

关键词 涂层纳米CeO2EIS防腐性能AFM    
Abstract

Salt spray test and immersion test for two accelerated weathering tests were carried out to research the effects of nano-CeO2 as a pigment to the corrosion resistance of polyurethane coating. According to EIS, ATR-FTIR, SEM and AFM characterized and analyzed the performance and micromorphology change of coating. The results show that as a pigment nano-CeO2 could decrease the rate of resistance reduction of polyurethane coating. When the concentration of adding nano-CeO2 was less than 0.5%(mass fraction), the EIS impedance spectrum dropped rapidly with acceleration time elapsed due to the electrolyte and H2O penetration into coating quickly and nano-CeO2 hydrolysis. While the corrosion resistance get markedly changed and maintained high impedance for a long time of the coating with additive 1.0% nano-CeO2. This phenomenon may be due to CeO2 hydrolysis in coating micro crack, reduced the pore channel, and Ce(III, IV) migrated to the Al alloy/coating interface, inhibiting the corrosion of active site, thus decreasing the attenuation process of impedance. At the later stage of salt spray test, CeO2 further hydrolysis leaded to Ce ions dissolution erosion, which caused micro cracks expansion again and coating impedance reducing quickly. When the addition of nano-CeO2 excessed 1.0% would weaken the adhesion of coating on aluminum alloy matrix. Long time immersion test showed that 1.0% of nano-CeO2 could achieve balance of Ce ions dissolution and migration, and increased the anticorrosion performance of PU coating.

Key wordscoating    nano-CeO2    EIS    anticorrosion performance    AFM
收稿日期: 2016-09-08     
基金资助:国家自然科学基金 (51371087)
作者简介: 蔡光义,男,1989年生,博士生

引用本文:

蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
Guangyi CAI, Haowei WANG, Weihang ZHAO, Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 411-420.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.147      或      https://www.jcscp.org/CN/Y2017/V37/I5/411

图1  不同涂层在3.5%NaCl溶液中的Nyquist图
图2  涂层电阻和电容随纳米CeO2添加量的变化曲线及涂层等效电路
图3  不同涂层在3.5%NaCl溶液中浸泡不同时间的Nyquist图
图4  涂层不同失效阶段等效电路图
图5  不同涂层在3.5%NaCl溶液中浸泡时|Z0.01 Hz|随时间的变化曲线
图6  不同涂层在盐雾实验条件下不同时间的Nyquist图
图7  不同涂层的|Z0.01 Hz|随盐雾实验时间的变化曲线
图8  不同含量纳米CeO2涂层红外光谱图
图9  CeO2在涂层中的缓蚀机理示意图
图10  含不同添加量的纳米CeO2聚氨酯涂层的AFM相位图
图11  未处理涂层以及盐雾实验、全浸泡实验后涂层的相位粗糙度和高度粗糙度分布图
图12  纳米CeO2添加量不同的聚氨酯涂层划叉后盐雾实验120 h的形貌图
图13  未添加和添加1.0%纳米CeO2的聚氨酯涂层在浸泡158 h前后的SEM像
图14  含1.0%纳米CeO2的聚氨酯涂层在浸泡1和158 h后的EDS分析结果
[1] Liu S, Sun H Y, Sun L J, et al.Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution[J]. Corros. Sci., 2012, 65: 520
[2] Cheng W, Zhou Y, Gu H S, et al.Research & development progress of environmentally friendly corrosion inhibitors[J]. Corros. Prot. Petrochem. Ind., 2015, 32(3): 9
[2] (程伟, 周扬, 古华山等. 环境友好型缓蚀剂的研究进展[J]. 石油化工腐蚀与防护, 2015, 32(3): 9)
[3] Zhang D Q, Gao L X, Zhou G D.Recent progress and prospect for corrosion inhibitor science and technology[J]. Corros. Prot., 2009, 30: 604
[3] (张大全, 高立新, 周国定. 国内外缓蚀剂研究开发与展望[J]. 腐蚀与防护, 2009, 30: 604)
[4] Zhang Y X.Applied research development of evaluating anti-corrosion performance of organic coatings by EIS[J]. Contemp. Chem. Ind., 2007, 36: 516
[4] (张玉玺. EIS法评价有机涂层耐蚀性能的应用研究进展 [J]. 当代化工, 2007, 36: 516)
[5] Montemor M F, Snihirova D V, Taryba M G, et al.Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors[J]. Electrochim. Acta, 2012, 60: 31
[6] Nguyen A S, Musiani M, Orazem M E, et al.Impedance study of the influence of chromates on the properties of waterborne coatings deposited on 2024 aluminium alloy[J]. Corros. Sci., 2016, 109: 174
[7] Ilman M N.Chromate inhibition of environmentally assisted fatigue crack propagation of aluminium alloy AA 2024-T3 in 3.5%NaCl solution[J]. Int. J. Fatigue, 2014, 62: 228
[8] Aramaki K.The inhibition effects of chromate-free anion inhibitors on corrosion of zinc in aerated 0.5 M NaCl[J]. Corros. Sci., 2001, 43: 591
[9] Zhang M L, Zhao J M.Research progress of synergistic inhibition effect and mechanism[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
[9] (张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展[J]. 中国腐蚀与防护学报, 2016, 36: 1)
[10] Do?ru Mert B.Corrosion protection of aluminum by electrochemically synthesized composite organic coating[J]. Corros. Sci., 2016, 103: 88
[11] Yoganandan G, Pradeep Premkumar K, Balaraju J N.Evaluation of corrosion resistance and self-healing behavior of zirconium-cerium conversion coating developed on AA2024 alloy[J]. Surface Coat. Technol., 2015, 270: 249
[12] Xiao W, Miao C, Huang X, et al.Effect of cerium ion (III) on corrosion resistance of organic-inorganic hybrid coating on surface of aluminum-tube used in refrigeration equipment[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3847
[13] Jiang M Y, Wu L K, Hu J M, et al.Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 1: Improved corrosion performance[J]. Corros. Sci., 2015, 92: 118
[14] Jiang M Y, Wu L K, Hu J M, et al.Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 2: Mechanistic investigations[J]. Corros. Sci., 2015, 92: 127
[15] Liu Y W, Zhou X R, Lyon S B, et al.An organic coating pigmented with strontium aluminium polyphosphate for corrosion protection of zinc alloy coated steel[J]. Prog. Org. Coat., 2017, 102: 29
[16] Rostami M, Rasouli S, Ramezanzadeh B, et al.Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating[J]. Corros. Sci., 2014, 88: 387
[17] Hao J L, Gao Y J, Dong Z H.Effects of siloxane sulfide and cerium salt complex conversion film on corrosion resistance of aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 525
[17] (郝敬丽, 高永晶, 董泽华. 硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J]. 中国腐蚀与防护学报, 2015, 35: 525)
[18] Cong S H, Hou Q.Corrosion resistance performance of epoxy Zn-Al-Mg-Ce riched alloy coating[J]. Chin. Surface Eng., 2010, 23(1): 57
[18] (从善海, 侯强. 环氧富Zn-Al-Mg-Ce合金涂层耐腐蚀性能[J]. 中国表面工程, 2010, 23(1): 57)
[19] Cotting F, Aoki I V.Smart protection provided by epoxy clear coating doped with polystyrene microcapsules containing silanol and Ce (III) ions as corrosion inhibitors[J]. Surface Coat. Technol., 2016, 303: 310
[20] Pan T J, Wang T.Corrosion performance and preparation of polyaniline film on the surface of AZ91 magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 489
[20] (潘太军, 汪涛. AZ91镁合金表面合成聚苯胺涂层及其腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34: 489)
[21] Zhang W, Wang J, Zhao Z Y, et al.EIS study on the deterioration process of organic coatings under immersion and cyclic wet-dry conditions[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 329
[21] (张伟, 王佳, 赵增元等. 电化学阻抗谱对比研究连续浸泡和干湿循环条件下有机涂层的劣化过程[J]. 中国腐蚀与防护学报, 2011, 31: 329)
[22] Su J X, Bai Y, Guan Q F, et al.Electrochemical impedance spectroscopy analysis of failure of aircraft surface coating[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 251
[22] (苏景新, 白云, 关庆丰等. 飞机蒙皮结构表面涂层失效的电化学阻抗分析[J]. 中国腐蚀与防护学报, 2013, 33: 251)
[23] Zuo Y, Pang R, Li W, et al.The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS[J]. Corros. Sci., 2008, 50: 3322
[24] Zhao Z Y, Wang J.Progress in cathodic delamination of organic coatings from metals[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 116
[24] (赵增元, 王佳. 有机涂层阴极剥离作用研究进展[J]. 中国腐蚀与防护学报, 2008, 28: 116)
[25] Sharmila R, Selvakumar N, Jeyasubramanian K.Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles[J]. Mater. Lett., 2013, 91: 78
[26] Yang X F, Tallman D E, Croll S G, et al.Morphological changes in polyurethane coatings on exposure to water[J]. Polym. Degrad. Stabil., 2002, 77: 391
[1] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[4] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[5] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[6] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[7] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[8] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[9] 李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[10] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[11] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[12] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[14] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[15] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.