Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 533-539    DOI: 10.11902/1005.4537.2016.144
  研究报告 本期目录 | 过刊浏览 |
硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响
梅朦, 郑红艾(), 陈惠达, 张鸣, 张大全
上海电力学院环境与化学工程学院 上海 200090
Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System
Meng MEI, Hongai ZHENG(), Huida CHEN, Ming ZHANG, Daquan ZHANG
College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
全文: PDF(2111 KB)   HTML
摘要: 

采用电化学测量方法和表面分析技术研究了硫酸盐还原菌对Cu电极在循环冷却水系统中腐蚀行为的影响,并初步探索了L-半胱氨酸对Cu材料的缓蚀效果。结果表明,有菌体系中Cu电极的极化电阻呈现先增大后减小的趋势,且在有菌环境中浸泡第10 d时 Cu电极的极化电阻比在无菌环境中的小25.82 kΩcm2。有菌体系中Cu电极的自腐蚀电流密度先减小后增大,与电化学阻抗谱实验呈现相同的趋势。有菌体系中加入不同浓度的L-半胱氨酸后,Cu电极的阻抗弧半径均有所增大,且自腐蚀电流密度均有不同程度的减小,在浓度为10-3 mol/L时缓蚀效果最佳。

关键词 微生物腐蚀硫酸盐还原菌电化学阻抗谱极化曲线    
Abstract

The microbe induced corrosion of Cu in circulation cooling water system was investigated in the presence of sulfate reducing bacteria by means of electrochemical measurement and surface analysis techniques. Meanwhile, the inhibition effect of cysteine on Cu was also assessed. The results show that, polarization resistance of Cu increased first and then decreased in the water with sulfate reducing bacteria, and the polarization resistance of Cu is 25.82 kΩcm2 lower than that in the sterile water. The corrosion current density of Cu reduced first and then increased, while the electrochemical impedance spectroscopy presented the same tendency. In the sulfate reducing bacteria containing water, the addition of different concentrations of L-cysteine can lead the decline of the corrosion current density Icorr and the expansion of the radius of electrochemical impedance of Cu, particularly with the concentration of 10-3 mol/L, L-cysteine exhibits the best corrosion inhibition effect for Cu in the water with sulfate reducing bacteria.

Key wordsmicrobial corrosion    sulfate reducing bacteria    electrochemical impedance spectroscopy    polarization curve
收稿日期: 2016-09-02     
ZTFLH:  TG174.3  
作者简介:

作者简介 梅朦,女,1991年生,硕士生

引用本文:

梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 533-539.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.144      或      https://www.jcscp.org/CN/Y2017/V37/I6/533

图1  Cu电极在有/无菌介质中浸泡1和10 d后表面的SEM 像
图2  Cu电极在有/无菌介质中浸泡1~10 d的Nyquist图和Bode图
Condition Time
d
Rs
Ωcm2
Q1
Scm-2s-n
n Rct
kΩcm2
ChiSq
1 123.7 1.203×10-4 0.8178 41.500 7.320×10-4
Without SRB 5 125.9 2.777×10-4 0.7294 6.418 9.514×10-4
10 137.9 2.845×10-5 0.7950 49.250 8.264×10-4
1 119.3 2.134×10-4 0.7546 5.352 8.020×10-4
With SRB 5 123.2 2.264×10-4 0.8768 23.680 8.960×10-4
10 115.6 3.722×10-4 0.8089 23.430 8.935×10-4
表1  Cu电极在含SRB介质中浸泡不同时间后的电化学阻抗拟合结果
图3  Cu在SRB菌液中浸泡不同时间的电化学阻抗谱等效电路
图4  Cu在有/无SRB介质中浸泡不同时间的极化曲线
图5  Cu电极在添加不同浓度半胱氨酸的有菌冷却水中浸泡1 d后的Nyquist图和Bode图
图6  Cu在添加半胱氨酸的含菌溶液中浸泡1 d后的电化学阻抗谱等效电路
Condition Time / d Icorr / μAcm-2 Ecorr / V Bc / mVdec-1 Ba / mVdec-1
1 8.989 -0.937 7.108 3.193
Without SRB 5 15.620 -0.932 6.198 2.812
10 2.184 -1.061 5.761 4.273
1 29.060 -0.509 5.557 1.129
With SRB 5 10.180 -0.618 8.893 1.008
10 23.290 -0.670 7.155 1.566
表2  极化曲线拟合所得的电化学参数
Concentration of L-cysteine / molL-1 Rs
Ωcm2
Q1
Scm-2s-n
Rf
Ωcm2
Q2
Scm-2s-n
Rct
kΩcm2
ChiSq
0 119.3 2.134×10-4 --- --- 5.352 8.020×10-4
10-2 116.7 3.988×10-4 830.2 1.319×10-5 23.410 1.429×10-3
10-3 120.0 3.874×10-4 321.7 1.736×10-5 83.550 2.371×10-3
10-4 112.5 1.090×10-3 487.1 1.370×10-4 37.810 2.474×10-3
表3  Cu电极在不同半胱氨酸浓度的SRB菌液中浸泡1 d后的电化学阻抗拟合结果
图7  不同浓度L-半胱氨酸对Cu电极在SRB溶液中浸泡1 d后Tafel曲线的影响
Concentration of L-cysteine / molL-1 IcorrμAcm-2 EcorrV BcmVdec-1 BamVdec-1
0 29.06 -0.509 5.557 1.129
10-2 23.34 -0.951 5.352 5.199
10-3 6.026 -0.766 6.686 3.618
10-4 21.47 -0.882 5.963 3.245
表4  极化曲线拟合所得的电化学参数
[1] Zheng Q, Li J, Du Y L, et al.Effects of sulfate reducing bacteria on electrochemical corrosion behavior of HSn70-1A copper alloy[J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 38(郑强, 李进, 杜一立等. 硫酸盐还原菌对HSn70-1A铜合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2008, 28(1): 38)
[2] Singh A, Sharma C, Lata S.Microbial influenced corrosion due to Desulfovibrio desulfuricans[J]. Anti-Corros. Methods Mater., 2011,58: 315
[3] Lavania M, Sarma P M, MandalA K, et al. Efficacy of natural biocide on control of microbial induced corrosion in oil pipelines mediated by Desulfovibrio vulgaris and Desulfovibrio gigas[J]. J. Environ. Sci., 2011, 23: 1394
[4] Cetin D, Aksu M L.Corrosion behavior of low-alloy steel in the presence of Desulfovibriocale doniensis[J]. Mater. Corros., 2013, 64: 236
[5] Noor N M, Yahaya N, Abdullah A, et al.Microbiologically influenced corrosion of X-70 carbon steel by Desulfovibrio vulgaris[J]. Adv. Sci. Lett., 2012, 13: 312
[6] Liu G Z, Wu J H.Studies on the research of marine microbial corrosion[J]. Corros. Prot., 2001, 22(10): 430(刘光洲, 吴建华. 海洋微生物腐蚀的研究进展[J]. 腐蚀与防护, 2001, 22(10): 430)
[7] Zhu R X, Li Z L.Microbial corrosion of industrial materials[J]. Corros. Prot., 1999, 20(10): 435(朱绒霞, 李增理. 工业材料的微生物腐蚀[J]. 腐蚀与防护, 1999, 20(10): 435)
[8] Kip N, van Veen J A. The dual role of microbes in corrosion[J]. ISME J., 2015, 9(3): 542
[9] Ke W.Advances in corrosion investigation of industrial and natural environment in china[J]. Corros. Prot., 2004, 25(1): 1(柯伟. 中国工业与自然环境腐蚀调查的进展[J]. 腐蚀与防护, 2004, 25(1): 1)
[10] Ren C Q, Zhou J M, Liu D X, et al.Study and development trend of corrosion inhibitor in oilfield[J]. Prog. Fine Petrochem., 2002, 3(10): 33(任呈强, 周计明, 刘道新等. 油田缓蚀剂研究现状与发展趋势[J]. 精细石油化工进展, 2002, 3(10): 33)
[11] Liu L, Peng D, Zhang Y P, et al.Study on corrosion inhibition performance of thiadiazole type corrosion inhibitor[J]. Mater. Rev., 2016, 30(6): 78(刘琳, 彭丹, 张艳萍等. 噻二唑型缓蚀剂缓蚀性能的研究[J]. 材料导报, 2016, 30(6): 78)
[12] Li X L, Zhang J P, Bi Z Y, et al.Effect of a new type of acidification inhibitor on corrosion inhibition performance of N80 steel[J]. Weld Tubing, 2016, 39(6): 5(李小龙, 张军平, 毕宗岳等. 一种新型复配酸化缓蚀剂对 N80 钢缓蚀性能的影响[J]. 焊管, 2016, 39(6): 5)
[13] Zaid G H, Rivas S P, Burgoyne T W, et al.Corrosion inhibitor systems using environmentally friendly green solvents [P]. US, US8575237, 2013
[14] Sun H M, Guo C J, Zeng Z Z.Study on scale and corrosion inhibition performance of a natural scale inhibitor[J]. Ind. Water Treat., 2000, 20(5): 21(孙海梅, 郭崇洁, 曾昭辉. 一种天然阻垢剂阻垢及缓蚀性能的研究[J]. 工业水处理, 2000, 20(5): 21)
[15] He X K, Chen B Z, Zhang Q F.Research status and prospect of corrosion inhibitor[J]. Mater. Prot., 2003, 36(8): 1(何新快, 陈白珍, 张钦发. 缓蚀剂的研究现状与展望[J]. 材料保护, 2003, 36(8): 1)
[16] Wu W M, Yang P, Du H Y, et al.Application of green corrosion inhibitor amino acid in inhibiting metal corrosion[J]. Surf. Technol., 2006, 35(6): 51(吴伟明, 杨萍, 杜海燕等. 绿色缓蚀剂氨基酸在抑制金属腐蚀方面的应用[J]. 表面技术, 2006, 35(6): 51)
[17] Li X, Hu Li X, Yan X C, et al.Study on corrosion mechanism of aliphatic amino acids to aluminum[J]. Mater. Prot., 2000, 33(5): 3(黎新, 胡立新, 颜肖慈等. 脂肪族氨基酸对铝缓蚀机理的研究[J]. 材料保护, 2000, 33(5): 3)
[18] Yang X K.Preparation of compound amino acid corrosion inhibitor[J]. New Technol. New Proc., 2002, (10): 39(杨新科. 复合氨基酸缓蚀剂的制备[J]. 新技术新工艺, 2002,(10): 39)
[19] Liu X X, Yuan L B, Li X H, et al.Corrosion inhibition of amino acids in sulfuric acid medium[J]. J. Yunnan Univ.(Nat. Sci. Ed.), 2003, 25(4): 355(刘晓轩, 袁朗白, 李向红等. 氨基酸类有机物在硫酸介质中对钢的缓蚀作用[J]. 云南大学学报 (自然科学版), 2003, 25(4): 355)
[20] Wang X J, Ge H H, Zhang M, et al.Corrosion behavior of brass in simulated cooling water containing sulfate reducing bacteria[J]. Corros. Prot., 2015, 36(10): 952(王学娟, 葛红花, 张敏等. 黄铜在含硫酸盐还原菌的模拟冷却水中的腐蚀行为[J]. 腐蚀与防护, 2015, 36(10): 952)
[21] Fu W, Li Y, Xu D, et al.Comparing two different types of anaerobic copper biocorrosion by sulfate-and nitrate-reducing bacteria[J]. Mater. Perform., 2014, 53(6): 66
[22] Li Y J, Zhang D.Study on corrosion behavior of Q235 steel in aerobic environment of sulfate-reducing bacteria[J]. Total Corros.Control, 2012, 5(26): 23(李永娟, 张盾. Q235 钢在含硫酸盐还原菌的有氧环境中腐蚀行为的研究[J]. 全面腐蚀控制, 2012, 5(26): 23)
[23] Cao L H.Synthesis of L-cysteine derivatives and their corrosion inhibition and molecular structure-activity relationships [D]. Nanjing University of Science and Technology, 2010(曹林华. L-半胱氨酸衍生物的合成及其缓蚀性能与分子构效关系的研究 [D]. 南京理工大学, 2010)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[5] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[8] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[9] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[10] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[11] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[12] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[13] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[14] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[15] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.