Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 189-194    DOI: 10.11902/1005.4537.2016.140
  研究报告 本期目录 | 过刊浏览 |
富镍导电涂层在模拟海水中的耐蚀性能研究
张心华1,周仲康1,徐群杰2,陈晓春1,闫爱军3,廖强强2(),葛红花2
1 国网安徽省电力公司电力科学研究院 合肥 230601
2 上海电力学院 上海市电力材料防护与新材料重点实验室 上海 200090
3 中国大唐集团科学技术研究院有限公司西北分公司 西安 710065
Anti-corrosion Performance of Nickel-rich Conductive Coatings in Simulated Seawater
Xinhua ZHANG1,Zhongkang ZHOU1,Qunjie XU2,Xiaochun CHEN1,Aijun YAN3,Qiangqiang LIAO2(),Honghua GE2
1 State Grid Anhui Electric Power Company Electric Power Research Institute, Hefei 230601, China
2 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
3 China Datang Corporation Science and Technologic Research Institute Co., Ltd, Northwest Branch,Xi'an 710065, China
全文: PDF(1964 KB)   HTML
摘要: 

在高黏度的丙烯酸树脂中加入镍粉、消泡剂及其它助剂制备出具有导电功能的防腐涂料并涂覆在作为船舶材料的20#碳钢上。通过测试涂层的表面接触电阻来表征涂层的导电性,研究发现镍粉含量越高,涂层的导电性越好。用电化学阻抗谱研究了不同镍粉含量的导电涂层在模拟海水中的耐蚀性,并用扫描电镜 (SEM) 观察了浸泡90 d后涂层的表面形貌。结果表明,随浸泡时间的延长,镍粉的含量越高,涂层的容抗弧、阻抗、相位角、|Z |0.05越小;且下降的越快;从Tafel极化曲线可知,镍粉含量越高,涂层的腐蚀电流越大;从涂层表面的SEM像可知,镍粉含量越高,涂层表面腐蚀越严重。在所研究的体系中,镍粉的含量约在20% (质量分数) 时,具有较好的导电性能和耐蚀性能。

关键词 导电涂料镍粉导电性耐蚀性    
Abstract

Conductive anticorrosion coatings were prepared with high viscosity acrylic resin as matrix, Ni- powder and defoamer etc. as additives, and then applied on 20# carbon steel. The electrical conductivity and the anti-corrosion performance in simulated seawater of the coatings with different Ni-powder content were characterized by means of surface contact resistance measurement, electrochemical impedance spectroscopy, and scanning electron microscopy respectively. Results show that with the increasing amount of Ni-powder, the electrical conductivity of the coatings increased. While, as the longer of the immersion time and the higher amount of the Ni-powder are, the lower of the capacitive reactance arc, the impedance, the phase angle and |Z |0.05 of the coatings are. For a desired immersion time, the higher amount of the Ni-powder is, the faster decline of the capacitive reactance arc, the impedance, the phase angle and the |Z |0.05 of the coatings is. According to Tafel polarization result, the higher amount of the Ni-powder is, the greater of the corrosion current of coatings is. It is concluded that with the higher amount of Ni-powder, the coatings exhibit better electrical conductivity, but the lower of the viscosity and worse corrosion resistance. A coating with about 20% Ni-powder possesses a comprehensive performance with better electrical conductivity and corrosion resistance.

Key wordsconductive coating    nickel powder    electrical conductivity    anti-corrosion performance
收稿日期: 2016-09-01     
基金资助:上海市科委项目 (14DZ2261000) 和国家电网公司科技项目(5226SX13044J)

引用本文:

张心华,周仲康,徐群杰,陈晓春,闫爱军,廖强强,葛红花. 富镍导电涂层在模拟海水中的耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 189-194.
Xinhua ZHANG, Zhongkang ZHOU, Qunjie XU, Xiaochun CHEN, Aijun YAN, Qiangqiang LIAO, Honghua GE. Anti-corrosion Performance of Nickel-rich Conductive Coatings in Simulated Seawater. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 189-194.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.140      或      https://www.jcscp.org/CN/Y2017/V37/I2/189

图1  导电涂层的表面接触电阻率与镍粉含量的关系
图2  不同Ni含量涂层在3.5%NaCl溶液中浸泡2,16和36 d后的Bode图
图3  不同Ni含量涂层的|Z |0.05随浸泡时间的变化
图4  不同Ni含量涂层的极化曲线
Mass fraction of Ni / % E / V Icorr / μAcm-2
10 -0.706 55.56
20 -0.688 86.50
30 -0.700 101.60
40 -0.690 158.50
表1  不同Ni含量涂层在3.5%NaCl溶液中的Tafel曲线拟合结果
图5  不同Ni含量涂层在3.5%NaCl溶液中浸泡40 d后表面的SEM像
[1] Yang D W, Zhu Z P, Li J L.Prevent earthed network corrosion with combined conducting paint and cathodic protection[J]. Insul. Surge Arrest., 2005, (1): 44
[1] (杨道武, 朱志平, 李景禄. 用导电涂料与阴极保护联合防止接地网腐蚀[J]. 电瓷避雷器, 2005, (1): 44)
[2] Tansu? G, Tüken T, ?zy?lmaz A T, et al.Mild steel protection with epoxy top coated polypyrrole and polyaniline in 3.5%NaCl[J]. Curr.Appl. Phys., 2007, 7: 440
[3] Sprink G M, Dominis A J, Wallace G G, et al.Electro active conducting polymers for corrosion control part 2. Ferrous metals[J]. J. Solid State Electrochem., 2002, 6: 85
[4] Yu F B, Chen Y.Preparation of conductive coating with silver-plated copper powder and its properties[J]. Electr. Finish., 2012, 31(9): 63
[4] (余凤斌, 陈莹. 镀银铜粉导电涂料的制备及性能[J]. 电镀与涂饰, 2012, 31(9): 63)
[5] Liang Y C, Du C P, Wang W, et al.Research status of conducting paint and its application[J]. Guangdong Electr. Power, 2012, 25(3): 1
[5] (梁永纯, 杜春苹, 王伟等. 导电涂料研究现状及其应用[J]. 广东电力, 2012, 25(3): 1)
[6] Xu X R, Luo X J, Zhuang H R, et al.Electroless silver coating on fine copper powder and its effects on oxidation resistance[J]. Mater. Lett., 2003, 57: 3987
[7] Li Z N, Dong X L, Wang W N.Oxidation resistance of ultrafine Cu-Ag bimetallic powders[J]. J. Sichuan Univ.(Nat. Sci. Ed.), 2005, 42(suppl.2): 220
[7] (李哲男, 董星龙, 王威娜. 铜系导电涂料中纳米铜粉抗氧化问题的研究[J]. 四川大学学报(自然科学版), 2005, 42(增刊 2): 220)
[8] Wang H Q.Development of solderable low temperature curing conductive ink[J]. Sci. Technol. Eng., 2013, 13: 4676
[8] (王怀群. 电子焊接用低温硬化型导电涂料的开发[J]. 科学技术与工程, 2013, 13: 4676)
[9] Liu H Q, Tian Y L, Mao Q J, et al.Study on microwave reflective property of Ni-based conductive coating[J]. Electroplat. Finish., 2011, 30(4): 71
[9] (刘海清, 田英良, 毛倩瑾等. 镍基导电涂料微波反射性能研究[J]. 电镀与涂饰, 2011, 30(4): 71)
[10] Zhang S, Pan X Y, Li Y, et al.Study on the conductivity and shielding effectiveness of waterborne Ni-based electromagnetic shielding coatings[J]. Ordn. Mater. Sci. Eng., 2009, 32(3): 62
[10] (张松, 潘晓艳, 李永等. 水性镍系电磁屏蔽涂料导电与屏蔽效能研究[J]. 兵器材料科学与工程, 2009, 32(3): 62)
[11] Kamaraj K, Karpakam V, Azim S S, et al.Electropolymerised polyaniline films as effective replacement of carcinogenic chromate treatments for corrosion protection of aluminium alloys[J]. Synth. Met., 2012, 162: 536
[12] Lin J, Liu L M, Li C J.Electric conductivity of carbon black-alkyd resin paint[J]. J. Beijing Univ. Chem. Technol., 1997, 24(3): 8
[12] (林静, 刘丽敏, 李长江. 炭黑-醇酸树脂系导电涂料的导电性能[J]. 北京化工大学学报, 1997, 24(3): 85)
[13] Xie D M, Tong S P, Hu J M, et al.Study of the electrochemical behaviors of the zinc-rich paints based multilayer organic coatings in NaCl solution[J]. Acta Metall. Sin., 2004, 40: 749
[13] (谢德明, 童少平, 胡吉明等. 多道富锌基涂层在NaCl溶液中的电化学行为研究[J]. 金属学报, 2004, 40: 749)
[14] Liu J, Li X B, Wang J.EIS characteristic of organic coating with artificial defects in simulated deep-sea environment[J]. Corros. Sci. Prot. Technol., 2010, 22: 333
[14] (刘杰, 李相波, 王佳. 在模拟深海高压环境中人工破损涂层的电化学阻抗谱响应特征[J]. 腐蚀科学与防护技术, 2010, 22: 333)
[15] Navarchian A H, Joulazadeh M, Karimi F.Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces[J]. Prog. Org. Coat., 2014, 77: 347
[16] Ge H H, Zhou G D, Liao Q Q, et al.A Study of anti-corrosion behavior of octadecylamine-treated iron samples[J]. Appl. Surf. Sci., 2000, 156: 39
[17] Tientong J, Ahmad Y H, Nar M, et al.Improved mechanical and corrosion properties of nickel composite coatings by incorporation of layered silicates[J]. Mater. Chem. Phys., 2014, 145: 44
[18] Radhakrishnan S, Siju C R, Mahanta D, et al.Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant coatings[J]. Electrochim. Acta, 2009, 54: 1249
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[11] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[14] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[15] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.