Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 547-553    DOI: 10.11902/1005.4537.2016.138
  研究报告 本期目录 | 过刊浏览 |
镀锌层三价铬钝化成膜过程及耐蚀性研究
严寒1, 赵晴1(), 杜楠1, 胡彦卿2, 王力强2, 王帅星1
1 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
2 成都飞机工业 (集团) 有限责任公司制造工程部 成都 610092
Formation Process and Corrosion Resistance of Trivalent Chromium Passivation Film on Zn-plated Q235 Steel
Han YAN1, Qing ZHAO1(), Nan DU1, Yanqing HU2, Liqiang WANG2, Shuaixing WANG1
1 National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2 Chengdu Aircraft Industrial (Group) Co. Manufacture and Engineer Department, Chengdu 610092, China
全文: PDF(2611 KB)   HTML
摘要: 

采用浸泡法在Q235钢镀锌层表面制备三价铬钝化膜,借助扫描电镜 (SEM) 和X射线光电子能谱 (XPS) 分析了钝化膜的表面结构与成膜过程。通过Tafel曲线、电化学阻抗谱和中性盐雾实验 (NSS) 结果评定钝化膜的耐蚀性。结果表明,镀锌层表面光滑均匀、结构致密,无明显裂纹;钝化膜表面平整,散乱且无规律分布着大量裂纹;钝化膜主要含有Cr、O、Zn和少量的P、N等元素,并以Cr(OH)3、Zn(OH)2、Cr2O3和ZnO等化合物的共混物形式存在。钝化膜的形成过程包括镀锌层的溶解、钝化膜的生长和溶解及钝化膜的干燥3个步骤。盐雾实验表明经过三价铬钝化后的镀锌件耐蚀性提高近7倍。

关键词 镀锌三价铬钝化膜耐蚀性    
Abstract

The trivalent chromium passivation film on the surface of Zn-plated Q235 steel was fabricated by immersion method. The microstructure and corrosion performance of the passivation film were studied by means of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), as well as polarization curve measurement, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) test, respectively. The results show that the Zn-coating is compact without obvious cracks but with excellent anticorrosion performance. The trivalent chromium passivation film on Zn-coating has smooth surface with a large number of cracks. The major constituents of the trivalent chromium passivation film were Zn, Cr and O, while a small amount of P and N was also detected, which probably in the form of compounds such as Cr(OH)3, Zn(OH)2, Cr2O3, and ZnO. The forming process of passivation film possibly consists of three steps such as zinc dissolution, passivation film forming and dissolution, and finally drying to become passivation film. It is noted through NSS test that the trivalent chromium passivation film can enhance the corrosion resistance of Zn-coating by c.a. 7 times.

Key wordsZn plating    trivalent chromium    passivation film    corrosion resistance
收稿日期: 2016-08-31     
ZTFLH:  TG174.3  
作者简介:

作者简介 严寒,女,1991年生,硕士生

引用本文:

严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
Han YAN, Qing ZHAO, Nan DU, Yanqing HU, Liqiang WANG, Shuaixing WANG. Formation Process and Corrosion Resistance of Trivalent Chromium Passivation Film on Zn-plated Q235 Steel. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 547-553.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.138      或      https://www.jcscp.org/CN/Y2017/V37/I6/547

图1  镀锌层及镀锌钝化层表面形貌
图2  镀锌三价铬钝化膜表面形貌、截面形貌及EDS结果
图3  镀锌三价铬钝化膜表面的XPS谱
图4  镀锌三价铬钝化膜的XPS精细谱
图5  镀锌三价铬钝化时间-电位曲线
Specy Binding energyeV Component Relative intensity%
Cr1 44.34 Cr2O3 34.8
Cr2 44.80 Cr(OH)3 65.2
O1 531.30 Zn(OH)2 44.4
O2 531.50 Cr2O3 21.8
O3 532.40 Cr(OH)3 33.7
表1  Cr3p 和O1s的XPS精细谱拟合结果
Coating Ecorr
V
Icorr×10-5 Acm-2 Rp
Ωcm2
ba bc
Zincplating -1.255 9.063 419 6.623 5.468
Cr(III)-treated zinc plating -1.159 5.649 980 3.395 4.434
Cr(VI)-treatedzinc plating -1.132 4.077 1334 3.788 4.250
表2  镀锌层及镀锌钝化层在3.5%NaCl溶液的Tafel曲线拟合数据
图6  镀锌层及镀锌钝化层在3.5%NaCl溶液中的Tafel曲线
图7  镀锌层及镀锌钝化层在3.5%NaCl溶液中的电化学阻抗图
图8  镀锌层与镀锌钝化膜电化学阻抗谱的拟合电路图
Coating RsΩcm2 QcSsec-ncm-2 np1 RcΩcm2 QdlSsec-ncm-2 np2 RctΩcm2 QpSsec-ncm-2 np3 RpΩcm2
Zinc plating 6.110 8.54×10-6 0.815 419 1.417×103 0.8830 181 --- --- ---
Cr(III)-treated zinc plating 4.825 2.04×10-7 0.931 1235 4.514×10-5 0.6853 1022 1.789×10-4 0.902 579
Cr(VI)-treated zinc plating 4.732 2.84×10-7 0.912 2905 3.163×10-5 0.5380 2560 3.528×10-4 0.891 762
表3  镀锌层与镀锌钝化膜电化学阻抗谱拟合参数
Coating Black spot / h White rust / h Red rust / h
Zinc plating --- 6 168
Cr(III)-treated zinc plating 48 408 912
Cr(VI)-treated zinc plating 288 660 1132
表4  镀锌层和镀锌钝化膜试样的盐雾实验结果
[1] Zhang X G.Efficiency of corrosion protection of steel by galvanizing and prospect for new coating development[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 166(章小鸽. 保护钢铁的效率和新型锌镀层的发展前景[J]. 中国腐蚀与防护学报, 2010, 30: 166)
[2] Shen P H, Tu Z M.Plating Zinc and Zinc Alloy [M]. Beijing: China Machine Press, 2002: 35(沈品华, 屠振密. 电镀锌及锌合金 [M]. 北京: 机械工业出版社, 2002: 35)
[3] Wilcox G D.Replacing chromates for the passivation of zinc surfaces[J]. Trans. IMF, 2003, 81: B13
[4] Li X Q, Chen D Q, Yu J Q.Technology and Application of Chemical Conversion Film [M]. Beijing: China Machine Press, 2005: 243(李鑫庆, 陈迪勤, 余静琴. 化学转化膜技术与应用 [M]. 北京: 机械工业出版社, 2005: 243)
[5] SarmaitisR, DikinisV, RezaiteV, et al. Conversion coatings for zinc substrates from acidic solution of Cr(III) compounds [A]. 2004 SUR/FIN Conference[C]. USA, Chicago, 2004: 575
[6] Chen J H, Ren Y P, Lu J T, et al.Research progress of trivalent chrome passivation on zinc plating[J]. Mater. Prot., 2004, 37(11): 32(陈锦虹, 任艳萍, 卢锦堂等. 镀锌层三价铬钝化的研究进展[J]. 材料保护, 2004, 37(11): 32)
[7] Wang H M, Chen M, Li J S.An approach to trivalent chromium passivation solution for zinc coating[J]. China Surf. Eng., 2008, 21(2): 40(王惠敏, 陈玫, 李基森. 镀锌层三价铬钝化剂的探讨[J]. 中国表面工程, 2008, 21(2): 40)
[8] Preikschat P, Jansen R, Hulser P.Chromium (VI)-free conversion layer and method for producing it [P]. US Pat, 6946201, 2005
[9] Bellezze T, Roventi G, Fratesi R.Electrochemical study on the corrosion resistance of Cr(III)-based conversion layers on zinc coatings[J]. Surf. Coat. Technol., 2002, 155: 221
[10] Oshima K, Tanaka S, Inoue M, et al.Processing solution for forming hexavalent chromium free and corrosion resistant conversion film on zinc or zinc alloy plating layers, hexavalent chromium free and corrosion resistant conversion film, method for forming the same [P]. EP, EP1318214Al, 2003
[11] Shi Z T.Trivalent chromic rainbow color passivating agent for gal vanizing and its production [P]. China Pat, 200410027586.7, 2005(施镇涛. 镀锌用三价铬彩虹色钝化剂及其制造方法 [P]. 中国专利, 200410027586.7, 2005)
[12] Zhang X, van den Bos C, Sloof W G, et al. Comparision of the morphology and corrosion performance of Cr(VI)-and Cr(III)-based conversion coatings on zinc[J]. Surf. Coat. Technol., 2005, 199: 92
[13] Zhang X, Sloof W G, Hovestad A, et al.Characterization of chromate conversion coatings on zinc using XPS and SKPFM[J]. Surf.Coat. Technol., 2005, 197: 168
[14] Saravanan G, Mohan S.Corrosion behavior of Cr electrodeposited from Cr(VI) and Cr(III)- baths using direct (DCD) and pulse electrodeposition (PED) techniques[J]. Corros. Sci., 2009, 51(1): 197
[15] Long Z L, Zhou Y C, Xiao L.Characterization of black chromate conversion coating on the electrodeposited zinc-iron alloy[J]. Appl. Surf. Sci., 2003, 218: 124
[16] Gaarenstroom S W, Winograd N.Initial and final state effects in the ESCA spectra of cadmium and silver oxides[J]. J. Chem. Phys., 1977, 67: 3500
[17] Shuttleworth D.Preparation of metal-polymer dispersions by plasma techniques: An ESCA investigation[J]. J. Phys. Chem., 1980, 84: 1629
[18] Mcintyre N S, Pratt A R, Piao H, et al. Resolution enhancement of X-ray photoelectron spectra by maximum entropy deconvolution [J]. Surf. Interface. Sci., 1999, 144/145: 156
[19] Hoflund G B, Asbury D A, Babb S J, et al.A surface study of amorphous chromium films electrodeposited from chromic acid solutions. Part I[J]. J. Vac. Sci. Technol. A, 1986, 4: 26
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[7] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[8] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[10] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[12] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[14] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[15] 冯旭,费敬银,李倍,张嫚,郭琪琪. 组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性[J]. 中国腐蚀与防护学报, 2019, 39(2): 167-175.