Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 175-182    DOI: 10.11902/1005.4537.2016.136
  研究报告 本期目录 | 过刊浏览 |
湿态电绝缘对电偶腐蚀行为的影响
赵欣1,胡裕龙1(),董赋1,张晓东2,王智峤1
1 海军工程大学理学院 武汉 430033
2 海军工程大学科研部 武汉 430033
Effect of Moistened Electrical Insulation on Galvanic Corrosion Behavior of Dissimilar Metals
Xin ZHAO1,Yulong HU1(),Fu DONG1,Xiaodong ZHANG2,Zhiqiao WANG1
1 College of Science, Naval University of Engineering, Wuhan 430033, China
2 Office of Research & Development, Naval University of Engineering, Wuhan 430033, China;
全文: PDF(1136 KB)   HTML
摘要: 

采用串联不同阻值电阻和3种不同的湿态绝缘材料进行了模拟异种金属电绝缘连接构件的电偶腐蚀实验,研究了湿态电绝缘状态对船体钢-白铜电偶腐蚀的影响。结果表明:绝缘材料在湿态下可成为电子导电的材料,湿态绝缘材料的电阻既包括离子导电引起的离子电阻Ri,还包括电子导电引起的电子电阻Re。湿态电绝缘下的白铜-船体钢电偶对中船体钢的腐蚀行为主要与湿绝缘材料的Re有关。当Re小于1 kΩ时,串联电阻时的电偶电流可高于直接短接时的电偶电流,船体钢的腐蚀速率可高于直接短接时的;当Re大于1 kΩ时,Re越大,电偶电流越小,船体钢的腐蚀速率越低。湿态绝缘材料Re的形成与绝缘材料的材质有关,选择合适的电绝缘材料是防止白铜-船体钢电偶腐蚀的关键。

关键词 电偶腐蚀电绝缘处理湿态绝缘材料电子电阻    
Abstract

The effect of moistened electrical insulation on galvanic corrosion behavior of dissimilar metals was investigated with a simulated galvanic corrosion setup, which consisted of a cell containing 3%NaCl solution with hull steel and cupronickel as electrodes and then by series connecting resistance elements or moistened insulation materials into the circuit. The results showed that through moistening the insulation material can be transformed into electrical conducting material. The resistance of moistened insulation material (Rm) may involve ionic resistance (Ri) and electrical resistance (Re), which are produced respectively by ionic conducting and electrical conducting. The corrosion behavior of the hull steel for the couple steel/cupronickel beneath a moistened insulation material may relate to the term Re. When Re is not higher than 1 kΩ, the galvanic current of the couple connected with a resistance element of a moistened insulation material may higher than that of the short-circuited couple, and the corrosion rates of hull steel of the couples connected with resistance elements may higher than that the short-circuited couple. When Re is higher than 1 kΩ, the galvanic currents of the couples connected with resistance elements decreased with the increase of Re, whilst the corrosion rate of the hull steel of the couples connected with resistance elements decreased with the increase of Re. The conduction of the moistened insulation material related to the nature of insulation material, the key to prevent galvanic corrosion of couple hull steel/cupronickel is the appropriate selection of insulation material.

Key wordsgalvanic corrosion    treatment of electrical insulation    moistened insulation material    electrical resistance
收稿日期: 2016-08-31     

引用本文:

赵欣,胡裕龙,董赋,张晓东,王智峤. 湿态电绝缘对电偶腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
Xin ZHAO, Yulong HU, Fu DONG, Xiaodong ZHANG, Zhiqiao WANG. Effect of Moistened Electrical Insulation on Galvanic Corrosion Behavior of Dissimilar Metals. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 175-182.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.136      或      https://www.jcscp.org/CN/Y2017/V37/I2/175

Material C Si Mn S P Ni Cr Pb Zn Cu Fe
Hull steel ≤0.11 0.5~0.8 0.6~0.12 ≤0.015 ≤0.025 0.5~0.8 0.6~0.9 --- --- 0.4~0.6 Bal.
B10 <0.010 --- ≤0.789 <0.005 --- ≤10.73 --- <0.010 ≤0.029 Bal. ≤1.74
表1  船体钢和B10合金的化学成分
图1  湿态绝缘电阻测量示意图
图2  电偶腐蚀实验装置示意图
图3  3种绝缘材料吸水率变化曲线
图4  3种绝缘材料的湿态电阻 (Rm) 变化曲线
图5  串联电阻的电偶对的腐蚀电位变化曲线
图6  B10与船体钢的电位差?E与串联电阻R的关系
图7  串联电阻的电偶对电偶电流Ig随时间的变化曲线
图8  稳态电偶电流与串联电阻之间的关系曲线
图9  串联电阻的电偶对腐蚀48 h后船体钢的电化学阻抗谱
R / Ω ?E / mV Rp of hull steel / Ωcm2
0 0 467.2
200 29 500.4
500 34 475.0
1000 49 589.5
2000 120 663.5
10000 252 950.6
表2  电偶对的稳定电位差?E和EIS拟合的船体钢极化电阻Rp随串联电阻R的变化
图10  串联湿态绝缘材料的电偶对的腐蚀电位随时间变化曲线
图11  串联湿态绝缘材料的电偶对的电偶电流Ig随时间的变化曲线
图12  湿态绝缘材料的等效电路模型
图13  串联湿态绝缘材料的电偶对浸泡48 h后船体钢的电化学阻抗谱
Condition ?E / mV Rp of hull steel / Ωcm2
Open circuit 350 1754
Series connection J1 247 765.2
with insulation J2 263 897.7
material J3 417 1454
表3  串联湿态绝缘材料的电偶对的稳定电位差?E和EIS拟合的船体钢极化电阻Rp
[1] Hasan B O.Galvanic corrosion of carbon steel-brass couple in chloride containing water and the effect of different parameters[J]. J. Pet. Sci. Eng., 2014, 124: 137
[2] Yoo J D, Ogle K, Volovitch P.The effect of synthetic zinc corrosion products on corrosion of electrogalvanized steel. II. Zinc reactivity and galvanic coupling zinc/steel in presence of zinc corrosion products[J]. Corros. Sci., 2014, 83: 32
[3] Liu J H, Wu H, Li S M, et al.Effect of surface treatments on galvanic corrosion behavior of titanium alloy TC2 coupled with aluminum alloys and steels[J]. Corros. Sci. Prot. Technol., 2003, 15: 13
[3] (刘建华, 吴昊, 李松梅等. 表面处理对TC2钛合金电偶腐蚀的影响[J]. 腐蚀科学与防护技术, 2003, 15: 13)
[4] Jin B, Shen W J.Electrical insulative technology of seawater pipe system on vessels[J]. Mech. Electr. Equip., 2006, 23(5): 28
[4] (金蓓, 沈伟杰. 舰船海水管系电绝缘技术[J]. 机电设备, 2006, 23(5): 28)
[5] Sykes J M, Xu Y.Electrochemical studies of galvanic action beneath organic coatings[J]. Prog. Org. Coat., 2012, 74: 320
[6] Santo T F A, Vasconcelos G C, de Souza W A, et al. Suitability of carbon fiber-reinforced polymers as power cable cores: Galvanic corrosion and thermal stability evaluation[J]. Mater. Des., 2015, 65: 780
[7] Schneider M, Kremmer K, L?mmel C, et al.Galvanic corrosion of metal/ceramic coupling[J]. Corros. Sci., 2014, 80: 191
[8] Gillen K T, Bernstein R, Clough R L, et al.Lifetime predictions for semi-crystalline cable insulation materials: I. Mechanical properties and oxygen consumption measurements on EPR materials[J]. Polym. Degrad. Stabil., 2006, 91: 2146
[9] Wang H Q.Effects of temperature and humidity on embedded components PCB insulating material[J]. Sci. Technol. Eng., 2013, 13: 4941
[9] (王怀群. 湿度对嵌入元器件印制板绝缘材料的影响[J]. 科学技术与工程, 2013, 13: 4941)
[10] Fofana I, Hemmatjou H, Farzaneh M.Low temperature and moisture effects on polarization and depolarization currents of oil-paper insulation[J]. Electr. Power Syst. Res., 2010, 80: 91
[11] Gebhard A, Bayerl T, Schlarb A K, et al.Increased wear of aqueous lubricated short carbon fiber reinforced polyetheretherketone (PEEK/SCF) composites due to galvanic fiber corrosion[J]. Wear, 2010, 268: 871
[12] Chen S H.Application of electric at insulation technology for sea water pipes[J]. GSI Shipbuild. Technol., 2004, (4): 37
[12] (陈世红. 海水管系电绝缘技术的应用[J]. 广船科技, 2004, (4): 37)
[13] Si W H.An investigation on of galvanic corrosion between exhaust system of titanium alloy and hull steel[J]. Dev. Appl. Mater., 2013, 28(2): 34
[13] (司卫华. 钛合金与钢的电偶腐蚀行为研究[J]. 材料开发与应用, 2013, 28(2): 34)
[14] Zhang G A, Yu N, Yang L Y, et al.Galvanic corrosion behavior of deposit-covered and uncovered carbon steel[J]. Corros. Sci., 2014, 86: 202
[15] Sun B K, Li N, Du M, et al.Galvanic corrosion and electric insulation between Cu-Ni alloy B10 and Tup copper[J]. Corros. Prot., 2010, 31: 544
[15] (孙保库, 李宁, 杜敏等. B10铜镍合金与Tup紫铜的电偶腐蚀及电绝缘[J]. 腐蚀与防护, 2010, 31: 544)
[16] Zhao J K, Ouyang B H, Zhao X T, et al.Review of influence of water-tree on microstructure and properties of XLPE cable insulation material[J]. Insul. Mater., 2010, 43(5): 50
[16] (赵健康, 欧阳本红, 赵学童等. 水树对XLPE电缆绝缘材料性能和微观结构影响的研究进展[J]. 绝缘材料, 2010, 43(5): 50)
[17] Liao R J, Zhou Z, Hao J, et al.Space charge characteristics of oil immersed paper under moisture and temperature effect[J]. High Volt. Eng., 2012, 38: 2647
[17] (廖瑞金, 周之, 郝建等. 水分和温度联合作用时油浸绝缘纸空间电荷特性[J]. 高电压技术, 2012, 38: 2647)
[18] Radu I.Electric field calculation and the influence of water trees on insulation breakdown in needle-plane geometry[J]. J. Electrost., 2004, 60: 49
[19] Zhou L R, Wu G N, Luo Y.Injection and conduction mechanisms of charge carriers in insulators[J] J. Mater. Sci. Eng., 2010, 28: 102
[19] (周力任, 吴广宁, 罗杨. 绝缘介质中载流子注入与传导的机理[J]. 材料科学与工程学报, 2010, 28: 102)
[20] Torkaman H, Karimi F.Measurement variations of insulation resistance/polarization index during utilizing time in HV electrical machines-A survey[J]. Measurement, 2015, 59: 21
[1] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[2] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[3] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[4] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[5] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[7] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[8] 魏强,李谋成,沈嘉年. 两种不锈钢在模拟消声器环境中的电偶腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(3): 233-238.
[9] 赵晓宏, 郭泉忠, 杜克勤, 郭兴华, 王勇. 不同涂层处理的汽车紧固件用ST12冷轧钢与SS400热轧钢的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 86-90.
[10] 徐宏妍, 李智勇. AZ91D镁合金电偶腐蚀的研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 298-305.
[11] 万 俐 杜 伟 李佳佳 丁 毅 陈步荣. 十八硫醇自组装膜对青铜-银电偶腐蚀的
抑制作用
[J]. 中国腐蚀与防护学报, 2013, 33(3): 245-250.
[12] 蒋穹,缪强,丁祥,魏小昕. 片状Al-Zn-Si合金粉的析氢行为与抑制剂研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 61-69.
[13] 裴和中,尹作升,张国亮,刘远勇. 2024与2124铝合金电偶腐蚀行为的对比研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 133-136.
[14] 陆晓峰,朱晓磊,凌祥. 一种预测异径管流动加速腐蚀速率的新模型[J]. 中国腐蚀与防护学报, 2011, 31(6): 431-435.
[15] 王春丽,吴建华,李庆芬.  海洋环境电偶腐蚀研究现状与展望[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.