Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 645-651    DOI: 10.11902/1005.4537.2016.121
  研究报告 本期目录 | 过刊浏览 |
动态条件下十二胺对Q235碳钢CO2腐蚀的缓蚀行为研究
刘宏伟1,熊福平1,吕亚林1,葛承宣1,刘宏芳1,2(),胡裕龙3
1. 华中科技大学化学与化工学院 材料服役与失效湖北省重点实验室 武汉 430074
2. 深圳华中科技大学研究院 深圳 518000
3. 海军工程大学理学院 武汉 430033
CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions
Hongwei LIU1,Fuping XIONG1,Yalin LV1,Chengxuan GE1,Hongfang LIU1,2(),Yulong HU3
1. Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen 518000, China
3. College of Science, Naval University of Engineering, Wuhan 430033, China
全文: PDF(1011 KB)   HTML
摘要: 

采用电化学方法,系统的研究了动态条件下,3% (质量分数) NaCl腐蚀介质中,十二胺缓蚀剂对Q235碳钢CO2腐蚀的缓蚀行为。结果表明,静态条件下,十二胺对碳钢CO2腐蚀具有较好的缓蚀效果,当缓蚀剂浓度为60 mg/L时,缓蚀效率可以达到93.44%。动态条件下,无缓蚀剂的测试介质中,试样的腐蚀速率随着转速的增加而增加。在含有80 mg/L十二胺缓蚀剂测试介质中,试样在转速为500 r/min时的腐蚀速率最大;而在2000 r/min时,试样的腐蚀速率最小,缓蚀剂的加入明显的改变了试样的腐蚀行为。转速为1500 r/min时,试样的腐蚀速率随着缓蚀剂浓度的增加而减少;当缓蚀剂浓度为80 mg/L时,缓蚀效率可以达到87.93%。

关键词 CO2 腐蚀Q235碳钢缓蚀剂动态    
Abstract

The corrosion inhibition of dodecylamine on carbon steel in NaCl solution with continuous aeration of CO2 was studied by means of a rotating disk with electrochemical methods. Results show that the inhibition efficiency of dodecylamine can reach 93.44% with the inhibitor dose of 60 mg/L in the solution. In the blank NaCl solution without inhibitor, the corrosion rate of the steel increases with the increase of the rotation speed. In the solution with the inhibitor dose of 80 mg/L, the corrosion rate of the steel reaches the highest by rotation speed 500 r/min, and then the lowest by 2000 r/min. The corrosion behavior of carbon steel has changed obviously in the presence of inhibitor. The corrosion rate increases with the increase of inhibitor dose, and the inhibition efficiency can reach 87.93% in the presence of inhibitor dose of 80 mg/L by 1500 r/min.

Key wordsCO2 corrosion    Q235 carbon steel    inhibitor    flow condition
    
基金资助:国家自然科学基金项目 (51171067),深圳市基础研发基金项目 (JC201005310696A),华中科技大学创新研究院技术创新基金项目 (0118013068),华中科技大学创新基金项目 (国合专项2015ZZGH010和前沿探索类2015TS150) 及材料化学与服役失效湖北省重点实验室基金项目 (201502) 资助

引用本文:

刘宏伟,熊福平,吕亚林,葛承宣,刘宏芳,胡裕龙. 动态条件下十二胺对Q235碳钢CO2腐蚀的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
Hongwei LIU, Fuping XIONG, Yalin LV, Chengxuan GE, Hongfang LIU, Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 645-651.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.121      或      https://www.jcscp.org/CN/Y2016/V36/I6/645

图1  十二胺分子结构式
图2  不同浓度缓蚀剂溶液在Q235碳钢表面的接触角
图3  接触角随缓蚀剂浓度变化
图4  试样在静态条件下不同缓蚀剂浓度介质中的极化曲线, 以及拟合得到的腐蚀电流密度与由此计算出的缓蚀效率随缓蚀剂浓度的变化曲线
图5  Q235钢在有无缓蚀剂条件下不同转速时获得的极化曲线
图6  由图5极化曲线拟合得到的腐蚀电流密度随转速变化曲线
图7  1500 r/min条件下不同缓蚀剂浓度测试介质中Q235钢试样的极化曲线及拟合结果
图8  有/无缓蚀剂溶液中不同转速条件下Q235钢试样的电化学阻抗谱
图9  电化学阻抗拟合等效电路
图10  Q235钢试样在有/无缓蚀剂的3%NaCl溶液中电化学阻抗的拟合结果
[1] Liu H W, Liu H F, Qin S, et al.Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield[J]. Corros. Sci. Prot. Technol., 2015, 27(1): 7
[1] (刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查[J]. 腐蚀科学与防护技术, 2015, 27(1): 7)
[2] Liu H, Gu T, Zhang G, et al.The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria[J]. Corros. Sci., 2015, 102: 93
[3] Liu H, Xu D, Dao A Q, et al.Study of corrosion behavior and mechanism of carbon steel in thepresence of chlorella vulgaris[J]. Corros. Sci., 2015, 101: 84
[4] Liu H, Fu C, Gu T, et al.Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corros. Sci., 2015, 100: 484
[5] Kermani M B, Morshed A.Carbon dioxide corrosion in oil and gas production: a compendium[J]. Corrosion, 2003, 59(8): 659
[6] Okafor P C, Liu X, Zheng Y G.Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution[J]. Corros. Sci., 2009, 51(4): 761
[7] Yin Z F, Zhao W Z, Bai Z Q, et al.Characteristics of CO2 corrosion scale formed on P110 steel in simulant solution with saturated CO2[J]. Surf. Interface Anal., 2008, 40(9): 1231
[8] Zhang G A, Cheng Y F.On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production[J]. Corros. Sci., 2009, 51(1): 87
[9] Lu Z L.Studies of inhibition performance and adsorption behavior of inhibitors on carbon steel in near neutral CO2-saturated brine solution [D]. Wuhan: Huazhong University of Science and Technology, 2007
[9] (鲁照玲. 近中性CO2饱和盐水溶液中缓蚀剂在碳钢表面吸附和缓蚀行为的研究 [D]. 武汉: 华中科技大学, 2007)
[10] Okafor P C, Liu C B, Liu X, et al.Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2 -saturated solutions and its synergism with thiourea[J]. J. Solid State Electrochem., 2010, 14(8): 1367
[11] Moretti G, Guidi F, Grion G.Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid[J]. Corros. Sci., 2004, 46(2): 387
[12] Liu H, Gu T, Zhang G, et al.Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors[J]. Corros. Sci., 2016, 105: 149
[13] Zhao J M, Chen G H.Synergistic inhibition mechanism of imidazoline and thiourea in CO2 corrosive system[J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 226
[13] (赵景茂, 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的缓蚀协同作用机理[J]. 中国腐蚀与防护学报, 2013, 33(3): 226)
[14] Ortega-Sotelo D, Gonzalez-Rodriguez J, Neri-Flores M, et al.CO2, corrosion inhibition of X-70 pipeline steel by carboxyamido imidazoline[J]. J. Solid State Electrochem., 2011, 15(9): 1997
[15] Ortega-Toledo D M, Gonzalez-Rodriguez J G, Casales M, et al. CO2, corrosion inhibition of X-120 pipeline steel by a modified imidazoline under flow conditions[J]. Corros. Sci., 2011, 53(11): 3780
[16] Wu S L, Cui Z D, Zhao G X, et al.EIS study of the surface film on the surface of carbon steel from supercritical carbon dioxide corrosion[J]. Appl. Surf. Sci., 2004, 228(1-4): 17
[17] Li C, Richter S, Nesic S.How do inhibitors mitigate corrosion in oil-water two-phase flow beyond lowering the corrosion rate?[J]. Corrosion, 2014, 70(9): 958
[18] Liu X, Okafor P C, Zheng Y G.The inhibition of CO2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives[J]. Corros. Sci., 2009, 51(4): 744
[19] Liu H W, Liu X, Wu L Y, et al.Research of scale inhibition performance of HGY-9BS modified imdazoline corrosion inhibitor[J]. Corros. Prot., 2014, 35(suppl. 2): 240
[19] (刘宏伟, 刘星, 吴林勇等. 改性咪唑啉缓蚀剂HGY-9BS阻垢性能研究[J]. 腐蚀与防护, 2014, 35(增刊2): 240)
[20] Zhang F, Liu H W, Chen B, et al.Corrosion inhibition of imidazoline for carbon steel in CO2-saturated artificial sewages with sulfate reduction bacteria[J]. J. Chin. Soc. Corros. Prot., 2015, 35(2): 156
[20] (张帆, 刘宏伟, 陈碧等. CO2和SRB共存产出水中咪唑啉衍生物的环境行为及缓蚀长效性研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 156)
[21] Zhang Y, Pang X, Qu S, et al.Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition[J]. Corros. Sci., 2012, 59(3): 186
[22] Hong T, Sun Y H, Jepson W P.Study on corrosion inhibitor in large pipelines under multiphase flow using EIS[J]. Corros. Sci., 2002, 44(1): 101
[23] Liu H W, Zhang F, Wu Y N, et al.Inhibition behavior of dodecylamine inhibitor in oilfield produced water containing saturated CO2 and SRB[J]. Corros. Prot., 2015, 36(2): 137
[23] (刘宏伟, 张帆, 吴亚楠等. 油田产出水中饱和CO2和SRB共存条件下十二胺缓蚀剂的缓蚀行为[J]. 腐蚀与防护, 2015, 36(2): 137)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[9] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[11] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[13] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[14] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.