Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (1): 47-53    DOI: 10.11902/1005.4537.2016.119
  本期目录 | 过刊浏览 |
γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究
李广宇1(), 雷明凯2
1 营口理工学院机电工程系 营口 115014
2 大连理工大学材料科学与工程学院 大连 116024
Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution
Guangyu LI1(), Mingkai LEI2
1 Department of Mechanical and Electrical Engineering, Yingkou Institute of Technology, Yingkou 115014, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
全文: PDF(2556 KB)   HTML
摘要: 

采用等离子体源渗氮技术在AISI 304L奥氏体不锈钢表面制备高氮面心结构的γΝ相层。利用AES和XPS分析了γΝ相层在pH值为8.4的硼酸溶液中钝化膜的化学组成,借助Mott-Schottky方程分析了γΝ相层钝化膜的半导体特性。结果表明:γΝ相层钝化膜具有双层结构,外层由Fe、Cr氢氧化物和氧化物构成,呈现出n型半导体特性;内层主要以Cr2O3为主,呈现出p型半导体特性,并且N以FeNx和CrNx形式存在于钝化膜内。与原始不锈钢钝化膜相比,γΝ相层钝化膜内施主浓度和受主浓度更低,平带电位负移,说明其钝化膜致密性更好,腐蚀速率更低。

关键词 等离子体源渗氮高氮面心立方相钝化膜耐蚀性能半导体特性    
Abstract

A high-nitrogen containing face-centered-cubic phase (γΝ) formed on AISI 304L austenitic stainless steel surface via plasma source nitriding. The chemical composition of the passive film on the γΝ-phase was characterized by means of AES and XPS, which formed in a borax buffer solution with pH value of 8.4. The semi-conductive characteristic of the passive film on the γΝ-phase was investigated by Mott-Schottky analysis. The results showed that the passive film on the γΝ-phase was of a two-layered structure: of which the outer portion composed of iron hydroxide/oxides and chromium hydroxide/oxides exhibiting n-type semi-conductive and inner portion composed of mainly chromium oxides with a little chr-omium- and iron-nitrides exhibiting p-type semi-conductive. In comparison with the passive film on the plain stainless steel, the passive film on the γΝ-phase is much densified with lower donor- and acceptor-density and more negative of the flat band potential, thus leading to the lowering corrosion rate.

Key wordsplasma source nitriding    high-nitrogen face-centered-cubic phase    passive film    corrosion resistance property    semi-conductive characteristic
收稿日期: 2016-08-20     
ZTFLH:  TG156.8  
基金资助:营口理工学院科研基金项目 (QNL201709)
作者简介: 作者简介 李广宇,男,1981年生,博士

引用本文:

李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 47-53.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.119      或      https://www.jcscp.org/CN/Y2018/V38/I1/47

图1  改性层的横截面金相照片
图2  改性层成分-深度分布曲线
图3  304L奥氏体不锈钢改性前后的XRD谱
图4  原始不锈钢与γΝ相层的阳极极化曲线
图5  原始不锈钢与γΝ相层钝化膜的AES浓度-深度分布曲线
图6  原始不锈钢表面钝化膜的XPS谱
图7  γΝ相层钝化膜的XPS谱
图8  原始不锈钢和γN相层钝化膜的Mott-Schottky曲线
Material ND / cm-3 NA / cm-3 Efb / mV(SCE)
304L SS 7.5×1020 9.7×1020 -440
γN phase 6.9×1019 1.9 ×1020 -530
表1  原始不锈钢和γN相层钝化膜内的施主浓度、受主浓度和平带电位
[1] Zhang Z L, Bell T.Structure and corrosion resistance of plasma nitrided stainless steel[J]. Surf. Eng., 1985, 1: 131
[2] Lei M K, Zhang Z L.Microstructure and corrosion resistance of plasma source ion nitrided austenitic stainless steel[J]. J. Vac. Sci. Technol., 1997, 15A: 421
[3] Picard S, Memet J B, Sabot R, et al.Corrosion behaviour, microhardness and surface characterisation of low energy, high current ion implanted austenitic stainless steel[J]. Mater. Sci. Eng., 2001, A303: 163
[4] Li G Y, Wang Z Y, Lei M K.Transition of wear mechanisms of plasma source nitrided AISI 316 austenitic stainless steel against ceramic counterface[J]. J. Tribol., 2012, 134: 011601
[5] Christiansen T, Somers M A J. On the crystallographic structure of S-phase[J]. Scr. Mater., 2004, 50: 35
[6] Lei M K, Liang J.X-ray diffraction of high nitrogen face centred cubic phase formed on nitrogen modified austenitic stainless steel[J]. Surf. Eng., 2010, 26: 305
[7] Thaiwatthana S, Li X Y, Dong H, et al.Comparison studies on properties of nitrogen and carbon S phase on low temperature plasma alloyed AISI 316 stainless steel[J]. Surf. Eng., 2002, 18: 433
[8] Zhu X M, Lei M K.Pitting corrosion resistance of high nitrogen f. c. c. phase in plasma source ion nitrided austenitic stainless steel[J]. Surf. Coat. Technol., 2000, 131: 400
[9] Gontijo L C, Machado R, Kuri S E, et al.Corrosion resistance of the layers formed on the surface of plasma-nitrided AISI 304L steel[J]. Thin Solid Films, 2006, 515: 1093
[10] Lei M K, Zhu X M.Role of nitrogen in pitting corrosion resistance of a high-nitrogen face-centered-cubic phase formed on austenitic stainless steel[J]. J. Electrochem. Soc., 2005, 152: B291
[11] Fossati A, Borgioli F, Galvanetto E, et al.Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions[J]. Corros. Sci., 2006, 48: 1513
[12] Flis J, Kuczynska M.Impedance of Cr18Ni10 stainless steel in sulphate solutions after a low-temperature plasma nitriding[J]. Mater. Corros., 2003, 54: 953
[13] Mu?oz-Castro A E, Valencia-Alvarado R, Barocio S R, et al. Electrochemical corrosion properties of AISI 304 SS treated by low, intermediate and high temperature plasma immersion ion implantation in a toroidal vessel[J]. Surf. Coat. Technol., 2005, 200: 569
[14] Lebrun J P, Poirier L, Hertz D, et al.Environmentally friendly low temperature plasma processing of stainless steel components for nuclear industry[J]. Surf. Eng., 2002, 18: 423
[15] Belo M D C, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment[J]. Corros. Sci., 1998, 40: 447
[16] Diercks D R, Shack W J, Muscara J.Overview of steam generator tube degradation and integrity issues[J]. Nucl. Eng. Des., 1999, 194: 19
[17] Han E-H, Wang J Q, Wu X Q, et al.Corrosion mechanisms of stainless steel and nickel base alloys in high temperature high pressure water[J]. Acta Metall. Sin., 2010, 46: 1379(韩恩厚, 王俭秋, 吴欣强等. 核电高温高压水中不锈钢和镍基合金的腐蚀机制[J]. 金属学报, 2010, 46: 1379)
[18] Piao T H, Park S M.Spectroelectrochemical studies of passivation and transpassive breakdown reactions of stainless steel[J]. J. Electrochem. Soc., 1997, 144: 3371
[19] Hakiki N E, Boudin S, Rondot B, et al.The electronic structure of passive films formed on stainless steels[J]. Corros. Sci., 1995, 37: 1809
[20] Fujimoto S, Tsuchiya H.Semiconductor properties and protective role of passive films of iron base alloys[J]. Corros. Sci., 2007, 49: 195
[21] Macdonald D D.The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139: 3434
[22] Ningshen S, Mudali U K, Mittal V K, et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49: 481
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[5] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[6] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[7] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[8] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[9] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[10] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[11] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[12] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[13] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[14] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[15] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.