Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 354-359    DOI: 10.11902/1005.4537.2016.101
  研究报告 本期目录 | 过刊浏览 |
锌基合金镀层钢板的耐蚀性研究
蒋光锐1,2(), 王海全1,2,3, 黎敏1, 刘广会1,2, 谢春乾1,2
1 首钢集团有限公司技术研究院 北京 100043
2 首钢集团有限公司技术研究院 绿色可循环钢铁流程北京市重点实验室 北京 100043
3 中国钢研科技集团先进金属材料涂镀国家工程实验室 北京 100081
Corrosion Properties of Steel Sheet with Zinc-base Alloyed Coatings
Guangrui JIANG1,2(), Haiquan WANG1,2,3, Min LI1, Guanghui LIU1,2, Chunqian XIE1,2
1 Shougang Group Co., Ltd. Research Institute of Technology, Beijing 100043, China
2 Beijing Key Laboratory of Green Recyclable Process for Iron & steel Production Technology, Beijing 100043, China
3 National Engineering Lab of Advanced Coating Technology for Metal Materials, China Iron and Steel Research Institute Group (CISRI), Beijing 100081, China
全文: PDF(3382 KB)   HTML
摘要: 

采用热浸镀的方法在镀锌模拟器上制备得到纯Zn、Galfan和Zn-Al-Mg 3种锌合金镀层钢板,3种镀层中的合金元素质量分数分别为Zn-0.2%Al,Zn-5%Al和Zn-2%Al-2%Mg,镀层钢板为无间隙原子钢 (IF钢)。采用全浸泡的方法研究了3种锌基合金镀层钢板的腐蚀行为,并采用电化学方法和扫描电镜研究了浸泡不同时间的锌基合金镀层钢板的耐蚀性。结果表明,在浸泡初期,Zn-Al-Mg镀层钢板的自腐蚀电流密度最大;随着浸泡时间延长,Zn-Al-Mg镀层钢板的自腐蚀电流密度缓慢减小,而纯Zn镀层钢板和Galfan镀层钢板的自腐蚀电流密度均增大。Galfan镀层钢板的Nyquist曲线具有明显扩散特征,镀层表面的腐蚀速率较快;而Zn-Al-Mg镀层钢板的Nyquist曲线表现为有限扩散特征,这表明其表面覆盖的腐蚀产物提高了Zn-Al-Mg镀层钢板的耐蚀性。

关键词 钢板Zn-Al-Mg镀层耐蚀性Galfan镀层热浸镀    
Abstract

Three hot-dip galvanizing coatings i.e. pure Zn, Zn-5%Al and Zn-2%Al-2%Mg were prepared respectively on sheets of a commercial interstitial free (IF) steel by a hot-dip process simulator (HDPS). Corrosion behavior of the coated steel sheets was studied by means of immersion test, electrochemical measurement and scanning electron microscope (SEM). Results show that the Zn-Al-Mg coating has the largest corrosion current density at the early stage of immersion. While with the increasing immersion time, the corrosion current density of the Zn-Al-Mg decreases but those of the pure Zn and Zn-5%Al coatings increase. For the Zn-5%Al coating, diffusion characteristics could be found for its Nyquist curve, which means higher corrosion rate. However, for the Zn-Al-Mg coating, limited diffusion characteristics could be found for its Nyquist curve, which means a perfect coverage of corrosion products on the coating surface, in other word, the corrosion resistance was enhanced.

Key wordssteel sheet    Zn-Al-Mg coating    corrosion resistance    Galfan coating    hot-dipping
收稿日期: 2016-07-19     
ZTFLH:  TG172  
基金资助:资助项目 北京市科技计划项目 (D15110300350000)
作者简介:

作者简介 蒋光锐,男,1982年生,博士

引用本文:

蒋光锐, 王海全, 黎敏, 刘广会, 谢春乾. 锌基合金镀层钢板的耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 354-359.
Guangrui JIANG, Haiquan WANG, Min LI, Guanghui LIU, Chunqian XIE. Corrosion Properties of Steel Sheet with Zinc-base Alloyed Coatings. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 354-359.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.101      或      https://www.jcscp.org/CN/Y2017/V37/I4/354

Hot-dip alloy Al Mg Zn
Pure zinc 0.2 0 Bal.
Galfan 5 0 Bal.
Zn-Al-Mg 2 2 Bal.
表1  不同Zn合金的化学成分
图1  纯Zn镀层浸泡不同时间后的表面形貌
图2  Galfan镀层浸泡不同时间后的表面形貌
图3  Zn-Al-Mg镀层浸泡不同时间后的表面形貌
图4  Zn合金镀层的开路电位-浸泡时间曲线
图5  3种Zn合金镀层钢板浸泡不同时间后的极化曲线
图6  3种锌合金镀层钢板浸泡不同时间后的腐蚀电位Ecorr与腐蚀电流密度Icorr
图7  3种Zn合金镀层钢板浸泡不同时间后的Nyquist曲线
[1] Shi Y Y, Zhang Z, Zhang J Q, et al.Review of atmospheric corrosion of zinc and zinc alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 373(施彦彦, 张昭, 张鉴清等. 锌及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2005, 25: 373)
[2] Zhang H, Qi H B, Du C W, et al.Corrosion behavior of the hot-dip galvanized steel sheet under adhesion of an alkaline mud in hot-humid environment[J]. Acta Metall. Sin., 2009, 45: 338(张红, 齐慧滨, 杜翠薇等. 湿热环境中碱性泥浆附着下镀锌钢板的腐蚀行为[J]. 金属学报, 2009, 45: 338)
[3] Liu Y W, Wang Z Y, Cao G W, et al.Corrosion behavior of Zn in simulated acid rain atmospheric environment[J]. Chin. J. Nonferrous Met., 2015, 25: 375(刘雨薇, 王振尧, 曹公望等. Zn在模拟酸雨大气环境中的腐蚀行为[J]. 中国有色金属学报, 2015, 25: 375)
[4] Guttman H, Belisle S, Esson D G.Galfan-a new coating for automotive tubing [R]. SAE, 1986
[5] Zhang X, Leygraf C, Wallinder I O.Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments[J]. Corros. Sci., 2013, 73: 62
[6] Xiong Z L, Zhang Y F, Jiang T.Performance characteristic and development situation of zinc-aluminum alloy plating coat[J]. Hebei Metall., 2012, (4): 8(熊自柳, 张雲飞, 姜涛. 锌铝合金镀层的性能特点与发展现状[J]. 河北冶金, 2012, (4): 8)
[7] Komatsu A, Izutani H, Tsujimura T, et al.Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg-alloy coated steel sheet under accelerated corrosion environment[J]. Tetsu-to-Hagane, 2000,86: 534
[8] Nishimura K, Kato K, Shindo H.Highly corrosion-resistant Zn-Mg alloy galvanized steel sheet for building construction materials[J]. Nippon Steel Tech. Rep., 2000, 81: 85
[9] Morimoto Y, Honda K, Nishimura K, et al.Excellent corrosion-resistant Zn-Al-Mg-Si alloy hot-dip galvanized steel sheet "SUPER DYMA"[J]. Nippon Steel Tech. Rep., 2003, 87: 24
[10] Tano K, Higuchi S.Development and properties of zinc-aluminum alloy coated steel sheet with high corrosion resistance (super zinc)[J]. Nippon Steel Tech. Rep., 1985, 25: 29
[11] Uranaka M, Shimizu T.Corrosion resistance of hot-dip Zn-6%Al-3%Mg alloy coated steel sheet used in automotive parts[J]. Metall.Sci. Technol., 2012, 30: 29
[12] Stellnberger K H, Hagler J, Wiesinger S, et al.Corrosion protection system for metals and pigment therefor [P]. German Patent: DE102007021602 A1, 2008
[13] Schuerz S, Fleischanderl M, Luckeneder G H, et al.Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment[J]. Corros. Sci., 2009, 51: 2355
[14] Schinkinger B, Zugner S.Zinc magnesium 70-implementation of a new metallic coating within the BMW group [A]. Proceedings of 4th International Conference on Steels in Cars and Trucks[C]. 2014: 524
[15] Angeli G, Brisberger R, Bulter M, et al.Zinc-magnesium-aluminium coatings for automotive Industry [A]. Proceedings of 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Beijing: Metallurgical Industry Press, 2013: 632
[16] Morimoto Y, Kurosaki M, Honda K, et al.The corrosion resistance of Zn-11%Al-3%Mg-0.2%Si hot-dip galvanized steel sheet[J]. Tetsu-to-Hagane, 2003, 89: 161
[17] VDA 239-100. Steel sheet for cold formingDA 239-100. Steel sheet for cold forming[S]. 2011
[18] Prosek T, Persson D, Stoulil J, et al.Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions[J]. Corros. Sci., 2014, 86: 231
[19] Xu H, Ji Y J.Study on corrosion properties of a new hot-dip galvanizing Zn-Al-Mg alloyed coating[J]. China Sci. Technol. Inf., 2011, (7): 170(许红, 冀英杰. 热浸镀新型Zn-Al-Mg合金镀层耐蚀性能研究[J]. 中国科技信息, 2011, (7): 170)
[20] Li X, Du H Y, Zhang J, et al.Electrochemical protection performance of hot-dipping Zn and Zn-AI alloys[J]. Marine Sci., 2005, 29(7): 33(李鑫, 杜鸿雁, 张杰等. 热浸镀用锌及锌铝合金的恒电流电化学性能[J]. 海洋科学, 2005, 29(7): 33)
[21] Jiang G R, Teng H X, Wang H Q, et al.Selective oxidation in press hardening steel during annealing with different dew points[A]. Proceedings of 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Beijing: Metallurgical Industry Press, 2013: 139
[22] Mondal A, Chakraborty A, Pathak A, et al.Estimation of the Fe-Zn intermetallic layer thickness in galvannealed coating through electrochemical route [A]. Galvatech 2015 Conference Proceedings[C]. Warrendale, PA: Association for Iron & Steel Technology, 2015: 317
[23] Li S W, Tu G, Hao Y F, et al.Study on the Corrosion Mechanism of Zn-5Al-0.5Mg-0.08Si coating[J]. J. Metall., 2011, 2011: 1
[24] Prosek T, Nazarov A, Bexell U, et al.Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions[J]. Corros. Sci., 2008, 50: 2216
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[10] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[11] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[12] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[13] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[14] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[15] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.