Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 322-328    DOI: 10.11902/1005.4537.2016.084
  研究报告 本期目录 | 过刊浏览 |
WBE技术研究水线区破损涂层的剥离机制-II
陈亚林1,2(), 张伟1,2, 王琦3, 王佳4
1 钢铁研究总院青岛海洋腐蚀研究所 青岛 266071
2 青岛钢研纳克检测防护技术有限公司 青岛 266071
3 山东省海洋生物研究院 青岛 266100
4 中国海洋大学化学化工学院 青岛 266100
Debonding Mechanism of Organic Coating with Artificial Defect in Areas Nearby Water-line in 3.5%NaCl Solution by WBE Technique-II
Yalin CHEN1,2(), Wei ZHANG1,2, Qi WANG3, Jia WANG4
1 Qingdao Institute of Marine Corrosion, Qingdao 266071, China
2 NCS Testing Technology Co., Ltd., Qingdao 266071, China
3 Marine Biology Institute of Shandong Province, Qingdao 266100, China
4. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(2490 KB)   HTML
摘要: 

应用阵列电极 (WBE) 联合电化学阻抗谱 (EIS) 技术,研究了气/液界面水线处破损涂层在3.5% (质量分数) NaCl溶液中的水线区破损涂层剥离行为。对比涂层剥离过程的腐蚀电流密度和阻抗谱分布行为,探讨了破损涂层在水线区的剥离机制。结果表明,涂层破损区和固有缺陷区均能够加速附近涂层阴极剥离过程。水线区破损涂层剥离行为特征为,破损区和固有缺陷区附近涂层首先发生阴极剥离,进而向外部涂层/金属界面扩展。此外,研究发现,破损区位于水线上方和下方时,其推动阴极剥离能力不同,即,加速水线下方涂层剥离作用弱于水线上方区域,致使水线及水线上方涂层剥离速率明显大于水线下涂层剥离速率。其原因显然与阴极剥离区溶解氧含量有关,即富氧区阴极剥离扩展速率大于乏氧区阴极剥离速率。

关键词 阵列电极水线区涂层剥离电流分布阻抗谱    
Abstract

Organic coatings on metal surface usually present inherent local defects, thus are easy to be deteriorated. The characteristic of corrosion beneath coatings with damages (i.e. the inherent or artificial ones) is that the inherent defect and the debonding defect may be coupled together to induce non-uniform corrosion of the metal substrate. Hence, the debonding process of organic coating with artificial defects nearby the waterline in 3.5% (mass fraction) NaCl solution was studied by means of wire beam electrode (WBE) method coupled with electrochemical impedance spectroscopy (EIS) technique. Through analyzing the variations of current distribution, coating impedance, impedance spectroscopy in the disbonding process, the debonding mechanism for the damaged coating in areas nearby the waterline could be revealed. The result showed that, the cathodic disbonding was expedited in the area around the inherent defect or the artificial defect. The characteristic of disbonding process for damaged coating near waterline is that, the cathodic disbonding first happened nearby the inherent defect as well as the artificial defect, and then expanded around. Besides, the position of the artificial defect can affect the cathodic disbonding process. When the artificial defect just located on the waterline, the disbonding rate above the waterline was higher than that below the waterline. It was because that the higher the oxygen content is, the faster the disbonding rate well be.

Key wordswire beam electrode    water-line    coating stripping    current distribution    electrochemical impedance spectroscopy
收稿日期: 2016-06-24     
ZTFLH:  O646  
基金资助:国家自然科学基金项目 (21203034)
作者简介:

作者简介 陈亚林,男,1988年生,硕士

引用本文:

陈亚林, 张伟, 王琦, 王佳. WBE技术研究水线区破损涂层的剥离机制-II[J]. 中国腐蚀与防护学报, 2017, 37(4): 322-328.
Yalin CHEN, Wei ZHANG, Qi WANG, Jia WANG. Debonding Mechanism of Organic Coating with Artificial Defect in Areas Nearby Water-line in 3.5%NaCl Solution by WBE Technique-II. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 322-328.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.084      或      https://www.jcscp.org/CN/Y2017/V37/I4/322

图1  阵列电极表面照片
图2  不同浸泡时间的阵列电极表面电流密度分布图
图3  浸泡不同时间后阵列电极的表面形貌
图4  浸泡51 d后11-9#丝的Nyquist图和等效电路
图5  6-3#丝与7-7#丝浸泡不同时间的Bode图
[1] Leng A, Streckel H, Stratmann M.The delamination of polymeric coatings from steel. Part 1: Calibration of the Kelvinprobe and basic delamination mechanism[J]. Corros. Sci., 1998, 41: 547
[2] Evans U R.Translated by Hua B D. The Corrosion and Oxidation [M]. Beijing: Machnical Industry Press, 1976: 70(Evans U R著. 华宝定译. 金属的腐蚀与氧化 [M]. 北京: 机械工业出版社, 1976: 70)
[3] Wang J.The Role of Liquid File Pattern in Atmospheric Corrosion[M]. Beijing: Chemical Industry Press, 2016: 271(王佳. 液膜形态在大气腐蚀中的作用 [M]. 北京: 化学工业出版社, 2016: 271)
[4] Tan Y, Bailey S, Kinsella B.Mapping non-uniform corrosion using the wire beam electrode method. III. Water-line corrosion[J]. Corros. Sci., 2001, 43: 1931
[5] Wang D.Study on effect of inhibitors on localized corrosion of metal using the wire-beam electrode [D]. Changsha: Hunan University, 2005(王丹. 用丝束电极研究缓蚀剂对金属局部腐蚀的影响 [D]. 长沙: 湖南大学, 2005)
[6] Lin C J, Zhuo X D, Chen J D, et al.Corrosion potential imaging at interface of polymeric coating/metal by array electrodetechnique[J]. J. Chin. Soc. Corros. Prot., 1997, 17(1): 7(林昌健, 卓向东, 陈纪东等. 阵列电极法测量聚合物/金属界面电位分布[J]. 中国腐蚀与防护学报, 1997, 17(1): 7)
[7] Wang W, Zhang X, Wang J.The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method[J]. Electrochem. Acta, 2009, 54: 5598
[8] Zhang X, Wang J, Wang W.A novel device for the wire beam electrode method and its application in the ennoblement study[J]. Corrosion. Sci., 2009, 51: 1475
[9] Zhang W, Wang J, Li Y N, et al.Evaluation of metal corrosion under defective coatings by WBE and EIS technique[J]. Acta Phys.- Chim. Sin., 2010, 26: 2941(张伟, 王佳, 李玉楠等. WBE联合EIS技术研究缺陷涂层下金属腐蚀[J]. 物理化学学报, 2010: 2941)
[10] Chen Y L, Zhang W, Ding K Y, et al.Debonding mechanism of organic coating with man-made defect in the area nearby water-line by WBE technique[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 67(陈亚林, 张伟, 丁葵英等. WBE技术研究水线区破损涂层的剥离机制[J]. 中国腐蚀与防护学报, 2016, 36: 67)
[11] Zhang X, Wang W, Wang J.Characterization of Electrochemical Heterogenity of Interface of an Artificial Biofilm/Metal by Means of a Wire Beam Electrode[J]. Corros. Sci. Prot. Technol., 2009, 21: 242(张霞, 王伟, 王佳. 利用丝束电极技术研究模拟微生物膜/金属界面的电化学不均匀性[J]. 腐蚀科学与防护技术, 2009, 21: 242)
[12] Chen Y L, Zhang W, Wang W, et al.Evaluation of water-line area corrosion for Q235 steel by WBE technique[J]. J. Chin. Soc. Corros. Prot., 2014, 34(5): 452(陈亚林, 张伟, 王伟等. WBE技术研究水线区Q235碳钢腐蚀[J]. 中国腐蚀与防护学报, 2014, 34(5): 452)
[13] Kong D Y.Study on the degradation of organic coatings and substrate metal corrosion by combined WBE and EIS techniques [D]. Qingdao: Ocean University of China, 2011(孔德艳. 联合丝束电极技术和电化学阻抗技术研究有机涂层劣化过程 [D]. 青岛: 中国海洋大学, 2011)
[14] Kong D Y, Wang W, Wang J.Correlation between electrochemical impedance and current distribution of carbon steel under organic coating[J]. Mater. Corros., 2012, 63: 475
[15] Yu C Y.Cause of Corrosion Failure in Coated Steels and Protection[J]. Total Corros. Control, 2014, 28(1): 32(余存烨. 涂层钢腐蚀破坏的原因与防护[J]. 全面腐蚀控制, 2014, 28(1): 32)
[16] Li Y N.The research of the cathodic protection effect on broken organic coating [D]. Qingdao: Ocean University of China, 2011(李玉楠. 阴极保护对破损有机涂层防护作用的研究 [D]. 青岛: 中国海洋大学, 2011)
[17] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 229(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 229)
[18] Wang F L, Kang W L, Jing H M. Corrosion Electrochemical Principle, Method and Application [M]. Beijing: Chemical Industry Press, 2008: 132(王凤平, 康万利, 敬和民. 腐蚀电化学原理、方法及应用 [M]. 北京: 化学工业出版社, 2008: 132)
[19] Zhang B H, Cong W B, Yang P.Metal Electrochemical Corrosion and Protection [M]. Beijing: Chemical Industry Press, 2005: 115(张宝宏, 丛文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005: 115
[1] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[7] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[8] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[12] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.