Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 457-462    DOI: 10.11902/1005.4537.2016.071
  本期目录 | 过刊浏览 |
镀液pH值对电沉积Ni-W合金镀层结构及其耐蚀性能的影响
周琼宇1,2,王小芬1(),钟庆东2,王操1,胡一峰1
1. 江西理工大学材料科学与工程学院 赣州 341000
2. 上海大学 上海市现代冶金与材料制备重点实验室 上海 200072
Effect of pH Value on Structure and Corrosion Resistance of Electrodeposited Ni-W Alloy Coating
Qiongyu ZHOU1,2,Xiaofen WANG1(),Qingdong ZHONG2,Cao WANG1,Yifeng HU1
1. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. Shanghai Key Laboratory of Modern Metallurgy and Material Processing, Shanghai University, Shanghai 200072, China
全文: PDF(2130 KB)   HTML
摘要: 

采用直流电沉积的方法在低碳钢表面制备了一层Ni-W合金镀层,研究了pH值对电沉积Ni-W合金镀层结构及其耐蚀性能的影响。结果表明:在硫酸盐-柠檬酸镀液体系中可直接沉积一层均匀致密的Ni-W合金层,pH值小于7的镀液沉积得到纳米晶结构的Ni-W镀层;pH值大于7时,镀层为非晶态结构。Ni-W合金层的硬度主要由镀层中W含量所决定,镀液pH值为5.5时所沉积的Ni-W镀层中W含量最高,镀层的硬度最高 (753 HV);在3.5% (质量分数) NaCl溶液中,Ni-W合金层均表现出比低碳钢更低的电化学活性,对基体具有良好的保护作用。在所有的Ni-W合金镀层样品中,非晶态镀层由于表面易发生钝化而具有更加优异的耐蚀性能,其中镀液pH值为7.5时所沉积的镀层具有最优的耐蚀性能。

关键词 Ni-W合金镀层电沉积耐蚀性钝化电化学阻抗    
Abstract

Ni-W alloy coating was electrodeposited on low-carbon steel from an aqueous citrate-sulphate,while the effect of pH value on surface state, structure and corrosion resistance of the Ni-W alloy coatings was investigated. The result shows that: nanocrystalline Ni-W alloy coatings were produced when pH<7, while amorphous Ni-W alloy coatings were electrodeposited when pH>7. The hardness of Ni-W alloy coatings is correlated with the W content in the alloy coating. In contrast with low-carbon steel, Ni-W alloy coatings show much positive corrosion potential and much lower corrosion current density. Furthermore, the amorphous Ni-W alloy coating electrodeposited by pH=7.5 shows the best corrosion resistance due to the peculiar passivity of the coating in 3.5%(mass fraction) NaCl.

Key wordsNi-W alloy    coating    electrodeposition    corrosion resistance    passive    electrochemical impedance spectroscopy
    
基金资助:国家自然科学基金项目 (51504104),江西省自然科学基金项目 (20151BAB216012和20161BAB206141) 及江西理工大学博士启动基金项目 (3401223204) 资助

引用本文:

周琼宇,王小芬,钟庆东,王操,胡一峰. 镀液pH值对电沉积Ni-W合金镀层结构及其耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 457-462.
Qiongyu ZHOU, Xiaofen WANG, Qingdong ZHONG, Cao WANG, Yifeng HU. Effect of pH Value on Structure and Corrosion Resistance of Electrodeposited Ni-W Alloy Coating. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 457-462.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.071      或      https://www.jcscp.org/CN/Y2016/V36/I5/457

图1  不同pH值镀液中制备的Ni-W合金镀层的XRD谱
图2  镀液pH值对Ni-W合金镀层中W含量及电流效率的影响
图3  不同pH值镀液中制备的Ni-W合金镀层的表面形貌
图4  不同pH值下制备的Ni-W合金镀层的截面图
图5  Ni-W合金镀层硬度随镀液pH值及W含量的变化情况
Sample pH Ecorr / V Icorr / μAcm-2
Mild steel --- -0.790 142.20
Ni-W alloy coating electroplated at: 4.5 -0.636 37.84
5.5 -0.591 11.57
7.5 -0.588 13.95
8.5 -0.609 27.09
表1  低碳钢和Ni-W合金镀层在3.5%NaCl溶液中的腐蚀电位和腐蚀电流密度拟合结果
图6  低碳钢和不同pH值镀液中所制备镀层在3.5%NaCl溶液中的极化曲线
图7  不同pH值镀液中所制备镀层在3.5%NaCl溶液中的电化学阻抗谱
[1] Zhang L Y, Ma A B, Jiang J H, et al.Effect of processing methods on microhardness and acid corrosion behavior of low-carbon steel[J]. Mater. Des., 2015, 65: 115
[2] Sheng M Q, Xu J F, Lv C K, et al.Preparation and corrosion resistance performance of Fe-Ni alloy coating on surface of mild steel[J]. Chin. J. Mater. Res., 2013, 27: 183
[2] (盛敏奇, 许继芳, 吕臣凯等. 低碳钢表面Fe-Ni合金层的制备及耐腐蚀性能[J]. 材料研究学报, 2013, 27: 183)
[3] Newby K R.Functional chromium plating[J]. Met. Finish., 1999, 97(1): 223
[4] Li Z H, Sheng M Q, Zhong Q D, et al.Influence of surface roughness of matrix on chromium coatings on the surface of H13 steel[J]. Chin. J. Mater. Res., 2010, 24(5): 455
[4] (李振华, 盛敏奇, 钟庆东等. 基体表面粗糙度对H13钢板表面镀铬层的影响[J]. 材料研究学报, 2010, 24(5): 455)
[5] Christian F, Christian D, Daniel H, et al.Potential of thick a C: H: Si films as substitute for chromium plating[J]. Surf. Coat. Technol., 2014, 241: 86
[6] Kumar U P, Kennady C J, Zhou Q.Effect of salicylaldehyde on microstructure and corrosion resistance of electrodeposited nanocrystalline Ni-W alloy coatings[J]. Surf. Coat. Technol., 2015, 283: 148
[7] Wang Y, Zhou Q, Li K, et al.Preparation of Ni-W-SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance[J]. Ceram. Int., 2015, 41(1): 79
[8] Podlaha E J, Landolt D.Induced codeposition iii. Molybdenum alloys with nickel, cobalt, and iron[J]. J. Electrochem. Soc., 1997, 144(5): 1672
[9] Davis G L, Gentry C H R. The electrodeposition of tungsten[J]. Metallurgia, 1956, 53(1): 3
[10] Lietzke M H, Holt M L.Codeposition of tungsten and iron from an aqueous ammoniacal citrate bath[J]. J. Electrochem. Soc., 1948, 94(5): 252
[11] Alimadadi H, Ahmadi M, Aliofkhazraei M, et al.Corrosion properties of electrodeposited nanocrystalline and amorphous patterned Ni-W alloy[J]. Mater. Des., 2009, 30(4): 1356
[12] Slavcheva E, Mokwa W, Schnakenberg U.Electrodeposition and properties of NiW films for MEMS application[J]. Electrochim. Acta, 2005, 50(28): 5573
[13] Sridhar T M, Eliaz N, Gileadi E.Electroplating of Ni4W[J]. Electrochem. Solid-state Lett., 2005, 8(3): C58
[14] Suli?anu N D.Electrochemical deposition of novel nanostructured magnetic thin films for advanced applications[J]. Mater. Sci. Eng., 2002, B95(3): 230
[15] Ju?k?nas R, Valsiūnas I, Pak?tas V, et al.On the state of W in electrodeposited Ni-W alloys[J]. Electrochim. Acta, 2009, 54(9): 2616
[16] Ju?k?nas R, Valsiūnas I, Pak?tas V, et al.XRD, XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni-W alloy[J]. Appl. Surf. Sci., 2006, 253(3): 1435
[17] Younes O, Gileadi E.Electroplating of high tungsten content Ni/W alloys[J]. Electrochem. Solid-state Lett., 2000, 3(12): 543
[18] Cesiulis H, Baltutiene A, Donten M, et al.Increase in rate of electrodeposition and in Ni (II) concentration in the bath as a way to control grain size of amorphous/nanocrystalline Ni-W alloys[J]. J. Solid State Electrochem., 2002, 6(4): 237
[19] Sunwang N, Wangyao P, Boonyongmaneerat Y.The effects of heat treatments on hardness and wear resistance in Ni-W alloy coatings[J]. Surf. Coat. Technol., 2011, 206(6): 1096
[20] Selvi V E, Seenivasan H, Rajam K S.Electrochemical corrosion behavior of pulse and DC electrodeposited Co-P coatings[J]. Surf. Coat. Technol., 2012, 206(8): 2199
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[7] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[9] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[10] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[11] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[13] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[15] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.