Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 382-388    DOI: 10.11902/1005.4537.2016.067
  研究报告 本期目录 | 过刊浏览 |
电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法
李腾1,2, 金伟良1,3(), 许晨1, 毛江鸿3
1 浙江大学结构工程研究所 杭州 310058
2 中国能建集团浙江省电力设计院有限公司 杭州 310012
3 浙江大学宁波理工学院 宁波 315100
Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete
Teng LI1,2, Weiliang JIN1,3(), Chen XU1, Jianghong MAO3
1 Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2 Zhejiang Electric Power Design Institute, Hangzhou 310012, China
3 Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
全文: PDF(1269 KB)   HTML
摘要: 

采用动电位极化测定方法,在测得钢筋的阴极极化曲线之后,通过对其进行一阶微分分析,确定了钢筋的临界析氢电位及相应的析氢电流密度,之后采用稳态测量法获得钢筋析氢稳态临界电流密度。结果表明,动电位极化曲线能够记录阴极电化学反应的变化过程,一阶微分曲线出现突变点之前,阴极反应以耗氧反应控制为主,突变点之后以析氢反应控制为主;并可以测定钢筋混凝土中钢筋析氢稳态临界电流密度,从而判断氢脆发生的可能性。采用该方法测得钢筋混凝土试件的析氢稳态临界电流密度约为0.355 A/m2

关键词 电化学修复氢脆阴极极化曲线析氢反应临界电流密度    
Abstract

Cathodic polarization curves of steel bar were measured via potentiodynamic polarization method. Then it gets the first-order differential analysis of polarization curves and acquires the critical hydrogen evolution potential and the hydrogen evolution current density of the steel bar. Next, the steady-state critical current density of hydrogen evolution was obtained by means of steady-state measurement. Results show that potentiodynamic polarization curves can monitor the electrochemical reaction process of the cathode. Before the abrupt point of the differential curve, the cathode reaction is dominated by the oxygen consumption reaction, and the hydrogen evolution reaction is the main control reaction after the abrupt point. With polarization curves, the steady-state critical current density of hydrogen evolution of the steel bar in reinforced concrete could be determined and thereby the probability of hydrogen embrittlement could be predicted. By this method, the steady-state hydrogen evolution critical current density of the test steel bar is acquired to be about 0.355 A/m2.

Key wordselectrochemical repair    hydrogen embrittlement    cathodic polarization curve    hydrogen evolution reaction    critical current density
收稿日期: 2016-05-26     
ZTFLH:  TU528.0  
基金资助:国家自然科学基金 (51578490,51408534和51408544),浙江省自然科学基金 (LQ14E080010),杭州市重大科技创新专项 (20142011A41)及杭州市科技计划 (20131831K31,20140533B42和20130533B18)
作者简介:

作者简介 李腾,男,1992年生,硕士生

引用本文:

李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 382-388.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.067      或      https://www.jcscp.org/CN/Y2017/V37/I4/382

图1  耗氧和析氢反应的Ee-pH关系曲线
图2  试件尺寸示意图
图3  动电位极化曲线测定实验
图4  稳态下极化电流密度测定实验
图5  混凝土中钢筋动电位极化曲线
图6  动电位极化曲线的一阶微分曲线
图7  试件1的动极化曲线及其微分曲线图
Test block number Critical hydrogen evolution potential / V Critical currentmA Critical current densityAm-2
1 -1.05 3.16 0.559
2 -1.04 2.25 0.398
3 -1.12 3.13 0.554
表1  各试件临界析氢电位及临界电流密度
图8  不同电流下阴极极化电位随时间变化曲线
Applied current density / Am-2 Steady-state cathodic polarization potential / V Applied current density / Am-2 Steady-state cathodic polarization potential / V
0.177 -0.968 0.619 -1.110
0.265 -1.003 0.707 -1.133
0.354 -1.031 0.796 -1.155
0.442 -1.058 0.884 -1.176
0.530 -1.084 --- ---
表2  各外加电流密度对应的稳态电位
图9  稳态下极化电流密度与阴极极化电位对应曲线
Test blocknumber Critical hydrogen evolution potential / V Steady-state critical current densityAm-2
1 -1.05 0.430
2 -1.04 0.280
3 -1.12 0.354
表3  各试件稳态下析氢临界电流密度
[1] Jin W L. Zhao Y X.Durability of Concrete Structure [M]. Beijing: Science Press, 2014(金伟良, 赵羽习. 混凝土结构耐久性 [M]. 北京: 科学出版社, 2014)
[2] Jin W L.Corroded Concrete Structures [M]. Beijing: Science Press, 2011(金伟良. 腐蚀混凝土结构学 [M]. 北京: 科学出版社, 2011)
[3] Jin W L, Chen J Y, Mao J H, et al.The effect of electrochemical rehabilitation on service performance of reinforced concrete structures[J]. Eng. Mech., 2016, 33(2): 1(金伟良, 陈佳芸, 毛江鸿等. 电化学修复对钢筋混凝土结构服役性能的作用效应[J]. 工程力学, 2016, 33(2): 1)
[4] Schneck U.Investigations on the chloride transformation during the electrochemical chloride extraction process[J]. Mater. Corros., 2000,51: 91
[5] Sun W B, Gao X J, Yang Y Z, et al.Microstructure of concrete after electrochemical chloride extraction treatment[J]. J. Harbin Eng. Univ., 2009, 30: 1108(孙文博, 高小建, 杨英姿等. 电化学除氯处理后的混凝土微观结构研究[J]. 哈尔滨工程大学学报, 2009, 30: 1108)
[6] Ministry of communications and transportation of the People's Republic of China. JTS 153-2-2012 Technical specification for electrochemical corrosion protection of reinforced concrete structures in harbour engineering [S]. Beijing: People Communications Press, 2012(中华人民共和国交通运输部. JTS 153-2-2012 海港工程钢筋混凝土结构电化学防腐蚀技术规范 [S]. 北京: 人民交通出版社, 2012)
[7] Zheng L, Wei J X, Yu Q J, et al.Electrode reaction during electrochemical chloride extraction of reinforced concrete[J]. J. Chin. Ceram. Soc., 2009, 37: 1190(郑靓, 韦江雄, 余其俊等. 电化学除盐过程中钢筋表面发生的电极反应[J]. 硅酸盐学报, 2009, 37: 1190)
[8] Yang Z Y.Studying the effect of cathodic polarization on the susceptibility of 907 steel to hydrogen embrittlement [D]. Qingdao: Ocean University of China, 2009(杨兆艳. 阴极极化对海水中907钢氢脆敏感性影响研究 [D]. 青岛: 中国海洋大学, 2009)
[9] Zhao D P.Study on hydrogen permeation and hydrogen embrittlement of x80 pipeline steel and its haz caused by cathodic protection [D]. Qingdao: China University of Petroleum (East China), 2014(赵大朋. 阴极保护下X80钢及焊接影响区的氢渗透行为和氢脆敏感性研究 [D]. 青岛: 中国石油大学 (华东), 2014)
[10] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
[11] Bennet J, Schue T J.Electrochemical chloride removal and protection of concrete bridge components: Laboratory studies strategic highway research program [R]. Washington: National Research Council, 1993
[12] García J, Almeraya F, Barrios C, et al.Effect of cathodic protection on steel-concrete bond strength using ion migration measurements[J]. Cem. Concr. Compos., 2012, 34: 242
[13] Wei J X, Wang X X, Zheng L, et al.Research on the hydrogen evolution reaction and its effect on the bond strength between reinforcement and concrete during electrochemical chloride extraction[J]. J. Wuhan Univ. Technol., 2009, 31(12): 30(韦江雄, 王新祥, 郑靓等. 电除盐中析氢反应对钢筋-混凝土粘结力的影响[J]. 武汉理工大学学报, 2009, 31(12): 30)
[14] General Administration of quality supervision, inspection and Quarantine of the People's Republic of China, China National Standardization Administration. GB/T 24196-2009 Corrosion of metals and alloys-Electrochemical test methods-Guidelines for conducting potentiostatic and potentiodynamic polarization measurements [S]. Beijing: Standards Press of China, 2010(中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 24196-2009 金属和合金的腐蚀电化学试验方法恒电位和动电位极化测量导则 [S]. 北京: 中国标准出版社, 2010)
[15] Liu W J.Investigation of microstructure and corrosion behavior of Mg-Al series magnesium alloy with/without rare earth element (Ce, La) addition [D]. Hangzhou: Zhejiang University, 2012(刘文娟. Mg-Al系镁合金及稀土元素 (Ce, La) 合金化后微观结构和腐蚀行为的研究 [D]. 杭州: 浙江大学, 2012)
[1] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[7] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[8] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[9] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[10] 张体明, 赵卫民, 郭望, 王勇. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[11] 郝文魁, 刘智勇, 张新, 杜翠薇, 李晓刚, 刘翔. H2S浓度对35CrMo钢应力腐蚀开裂的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[12] 李成杰,杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[13] 金伟良,郭柱,许晨. 电化学修复后钢筋极化状态分析[J]. 中国腐蚀与防护学报, 2013, 33(1): 75-80.
[14] 林召强,马力,闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[15] 张宇,宋仁国,唐普洪. 7075铝合金氢脆敏感性与Mg-H相互作用[J]. 中国腐蚀与防护学报, 2010, 30(5): 364-368.