Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 389-394    DOI: 10.11902/1005.4537.2016.064
  研究报告 本期目录 | 过刊浏览 |
人工神经网络在钛合金表面Ni-SiC复合电镀工艺中的应用
郭宝会1,2(), 邱友绪3, 李海龙1
1 渭南师范学院 数理学院 渭南 714099
2 渭南师范学院 陕西省X射线检测与应用研发中心 渭南 714099
3 自贡市高新技术创业服务中心 自贡 643000
Application of Artificial Neural Network for Preparation Process of Ni-SiC Composite Coatings on Ti-Alloy TA15
Baohui GUO1,2(), Youxu QIU3, Hailong LI1
1 School of Physical and Engineering, Weinan Normal University, Weinan 714099, China
2 Shaanxi Research and Development Center of X-ray Detection and Application, Weinan Normal University, Weinan 714099, China
3 Zi-gong Hi-tech Innovation Service Center, Zigong 643000, China
全文: PDF(2799 KB)   HTML
摘要: 

采用复合电镀在钛合金表面制备了Ni-SiC复合镀层,并利用人工神经网络预测了复合电镀工艺参数对镀层组织结构的影响。结果表明:增加镀液中SiC颗粒含量和搅拌速率均会明显增加复合镀层中SiC的含量,从而增加镀层的硬度;增加阴极电流密度会增加镀层的生长速率,但过高的阴极电流密度导致镀层组织产生裂纹。采用人工神经网络模型对不同复合电镀工艺参数所制备的Ni-SiC复合镀层的厚度和硬度进行了预测,所获得的预测结果与实验结果吻合较好,偏差处于合理范围。

关键词 钛合金Ni-SiC复合镀人工神经网络预测    
Abstract

Composite coatings of Ni-SiC were prepared on Ti-alloy TA15 by composite electroplating technology, while the effect of electroplating parameters on the coating structure was predicted by means of artificial neural network approach. The results showed that the increase of SiC particles in the plating bath and the stirring speed could lead to higher SiC content of the composite coating, which in turn resulted in higher coating hardness. Increase in cathodic current density caused higher coating growth rates, but too higher cathodic current density would also cause cracks in the coatings. Predictions of the coating growth rates and coating hardness were carried out via artificial neural network. After training, the neural network model was available for the prediction of the thickness and the hardness of the coating.

Key wordsTi alloy    Ni-SiC electroplating    artificial neural network    prediction
收稿日期: 2016-05-16     
ZTFLH:  TG146.2  
基金资助:陕西省自然科学研究项目 (2015KW-022),渭南市自然科学项目 (2015KYJ-2-4) 和渭南师范学院科研项目 (17ZRRC02)
作者简介:

作者简介 郭宝会,男,1978年生,博士,副教授

引用本文:

郭宝会, 邱友绪, 李海龙. 人工神经网络在钛合金表面Ni-SiC复合电镀工艺中的应用[J]. 中国腐蚀与防护学报, 2017, 37(4): 389-394.
Baohui GUO, Youxu QIU, Hailong LI. Application of Artificial Neural Network for Preparation Process of Ni-SiC Composite Coatings on Ti-Alloy TA15. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 389-394.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.064      或      https://www.jcscp.org/CN/Y2017/V37/I4/389

Test Factor Test results
SiC content
gL-1
Stirring speed
rmin-1
Current density
Adm-2
Plating bath temp.
Micro-hardness
HV0.49
Plating thickness
μm
1 10 50 1 40 422 46
2 10 100 2 50 443 73
3 10 200 3 60 452 90
4 10 400 4 70 459 105
5 30 50 2 60 432 70
6 30 100 1 70 471 49
7 30 200 4 40 512 102
8 30 400 3 50 529 86
9 60 50 3 70 563 87
10 60 100 4 60 632 96
11 60 200 1 50 689 52
12 60 400 2 40 718 75
13 90 50 4 50 592 98
14 90 100 3 40 636 82
15 90 200 2 70 732 68
16 90 400 1 60 738 44
表1  正交试验结果
图1  Ni-SiC复合镀层的表面和截面形貌、表面的XRD谱和沿镀层厚度方向的硬度分布曲线
图2  采用表1中实验2、5和15的参数所制备的Ni-SiC复合镀层的横截面形貌
图3  采用表1中实验8和13的参数所制备的Ni-SiC复合镀层的横截面形貌
图4  神经网络结构
图5  BP神经网络的训练结果
Test Factor Experimental result Prediction result Deviation
SiC contentgL-1 Stirring speed
rmin-1
Current density
Adm-2
Plating bath temp.
Plating thickness
μm
Micro-
hardness
HV0.49
Plating thickness μm Micro-
hardness
HV0.49
Plating thicknessdeviation / % Micro-
hardness
deviation / %
1 20 80 0.5 45 31 446 30 452 -3.2 +1.3
2 40 150 1.5 55 59 507 56 522 -5.1 +2.9
3 80 300 2.5 65 78 746 79 731 +1.2 -2.0
表2  预测与实测结果对比
[1] Tarzimoghadam Z, Sandlo?bes S, Pradeep K G, et al.Microstructure design and mechanical properties in a near-α Ti-4Mo alloy[J]. Acta Mater., 2015, 97: 291
[2] Lin J P, Zhang L Q, Song X P, et al.Status of research and development of light-weight γ-TiAl intermetallic based compounds[J]. Mater. China, 2010, 29(2): 1(林均品, 张来启, 宋西平等. 轻质γ-TiAl金属间化合物的研究进展[J]. 中国材料进展, 2010, 29(2): 1)
[3] Iijima D, Yoneyama T, Doi H, et al.Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses[J]. Biomaterials, 2003, 24: 1519
[4] Xu X P, Yu Y Q, Huang H.Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys[J]. Wear, 2003, 255: 1421
[5] Yao X F, Xie F Q, Han Y, et al.Effects of temperature on wear properties and friction coefficient of TC4 Alloy[J]. Rare Met. Mater. Eng., 2012, 41: 1463(姚小飞, 谢发勤, 韩勇等. 温度对TC4钛合金磨损性能和摩擦系数的影响[J]. 稀有金属材料与工程, 2012, 41: 1463)
[6] Liu C T, Schneibel J H, Maziasz P J, et al.Tensile properties and fracture toughness of TiAl alloys with controlled microstructures[J]. Intermetallics, 1996, 4: 429
[7] Liu G, Wang K H, He B B, et al.Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy[J]. Mater. Des., 2015, 86: 146
[8] Vadiraj A, Kamaraj M.Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys[J]. Tribol. Int., 2007, 40: 82
[9] Fu Y Q, Loh N L, Batchelor A W, et al.Improvement in fretting wear and fatigue resistance of Ti-6Al-4V by application of several surface treatments and coatings[J]. Surf. Coat. Technol., 1998, 106: 193
[10] Benea L, Ba?a S B, D?n?il? E, et al.Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions[J]. Mater. Des., 2015, 65: 550
[11] Abdelal A, Ibrahim K M, Hamid Z A.Enhancement of wear resistance of ductile cast iron by Ni-SiC composite coating[J]. Wear, 2006, 260: 1070
[12] Lee C K.Wear and corrosion behavior of electrodeposited nickel-carbon nanotube composite coatings on Ti-6Al-4V alloy in Hanks solution[J]. Tribol. Int., 2012, 55: 7
[13] Gyawali G, Hamal K, Joshi B, et al.Microstructural and electrochemical analysis of Ni-SiC composite coatings prepared in presence of additives[J]. Mater. Lett., 2014, 126: 228
[14] Hajialifini M, Amadeh A.Improvement of wear and corrosion resistance of AZ91 magnesium alloy by applying Ni-SiC nanocomposite coating via pulse electrodeposition[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2914
[15] Wu Y T, Shen B, Lui L.Artificial neural network modelling of plating rate and phosphorus content in the coatings of electroless nickel plating[J]. J. Mater. Process. Technol., 2008, 205: 207
[16] Rashidi A M, Eivani A R, Amadeh A.Application of artificial neural networks to predict the grain size of nano-crystalline nickel coatings[J]. Comput. Mater. Sci., 2009, 45: 499
[17] Ozerdem M S, Kolukisa S.Artificial neural network approach to predict the mechanical properties of Cu-Sn-Pb-Zn-Ni cast alloys[J]. Mater. Des., 2009, 30: 764
[18] Hayajneh M, Hassan A M, Alrashdan A, et al.Prediction of tribological behavior of aluminum-copper based composite using artificial neural network[J]. J. Alloy. Compd., 2009, 470: 584
[19] Ozerdem M S.Artificial neural network approach to predict the electrical conductivity and density of Ag-Ni binary alloys[J]. J. Mater. Process. Technol., 2008, 208: 470
[20] Fazel M, Jazi M R G, Bahramzadeh S, et al. Effect of solid lubricant particles on room and elevated temperature tribological properties of Ni-SiC composite coating[J]. Surf. Coat. Technol., 2014, 254: 252
[1] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[3] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[4] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[5] 付颖, 张艳, 包星宇, 张伟, 王福会, 辛丽. 钛合金表面耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 117-123.
[6] 林晓冬,彭群家,韩恩厚,柯伟. 核级不锈钢的热老化研究进展[J]. 中国腐蚀与防护学报, 2017, 37(2): 81-92.
[7] 聂亚楠,沈浩,谷坤鹏,王成启. 玻璃钢复合材料耐海水腐蚀性能及抗Cl-渗透寿命预测[J]. 中国腐蚀与防护学报, 2016, 36(4): 357-362.
[8] 刘海霞,程学群,李晓刚,肖葵,董超芳. A1060纯Al的海洋大气环境腐蚀寿命预测模型研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 349-356.
[9] 张新生,曹乃宁,李亚云. 基于Gumbel极值I型分布埋地油气管道的剩余寿命预测[J]. 中国腐蚀与防护学报, 2016, 36(4): 370-374.
[10] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[11] 邓志安,李姝仪,李晓坤,王珊,王晓军. 基于模糊神经网络的海洋管线腐蚀速率预测新方法[J]. 中国腐蚀与防护学报, 2015, 35(6): 571-576.
[12] 朱志平,银朝晖,柳森,肖剑峰. 紫铜T2在高浓度H2S模拟环境中的腐蚀行为及预测模型[J]. 中国腐蚀与防护学报, 2015, 35(4): 333-338.
[13] 王海杰, 王佳, 彭欣, 山川. 钛合金在3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 75-80.
[14] 韩夏冰 高志明 党丽华 王 迎 毕慧超. Q235钢在模拟大气环境中
早期腐蚀图像小波包分析
[J]. 中国腐蚀与防护学报, 2013, 33(3): 211-215.
[15] 陆晓峰,朱晓磊,凌祥. 一种预测异径管流动加速腐蚀速率的新模型[J]. 中国腐蚀与防护学报, 2011, 31(6): 431-435.