Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (1): 74-80    DOI: 10.11902/1005.4537.2016.057
  本期目录 | 过刊浏览 |
铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究
崔晓飞1, 谭晓明2(), 王德2, 钱昂2
1 海军装备部航空装备局 北京 100841
2 海军航空大学青岛校区 青岛 266041
Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum
Xiaofei CUI1, Xiaoming TAN2(), De WANG2, Ang QIAN2
1 Aeronautical Equipment Department of the Naval Equipment Department,Beijing 100841, China
2 Qingdao Branch, Naval Aeronautical University, Qingdao 266041, China
全文: PDF(2752 KB)   HTML
摘要: 

针对有机涂层抗腐蚀性能评估问题,基于涂层老化物理机制,运用热力学理论建立了紫外线辐照条件下当量折算系数理论模型,提出了有机涂层加速老化实验谱编制方法。针对铝合金表面聚氨酯涂层进行了加速老化实验,分别从宏观和微观形貌、失光率、色差、粘附性能、电化学阻抗等多个方面表征了涂层老化规律,揭示了老化物理机制。结果表明,失光率和色差不能作为涂层失效评估参数,粘附性能和电化学阻抗能较好地表征涂层老化规律。涂层老化过程大致可以分成3个阶段,初期 (第0~2个周期) 抗腐蚀性能完好,低频电化学阻抗|Z |0.01 Hz为1010 Ωcm2量级;中期 (第3~7个周期),|Z |0.01 Hz为107~109 Ωcm2量级,内部微孔增大增多,抗腐蚀性能明显衰减;后期 (第8~9个周期),表面出现局部鼓包,|Z |0.01 Hz为106 Ωcm2量级,粘附性能仅为初始值的35%,涂层失效。涂层的使用寿命大约为8 a,这与实际使用情况相吻合,初步验证了涂层加速实验谱编制方法的合理性和可行性。

关键词 铝合金聚氨酯涂层加速实验谱紫外线辐照电化学阻抗粘附性能    
Abstract

A model of equivalent conversion coefficient for UV radiation was firstly proposed, and which then was coupled with the existed acceleration corrosion testing method to establish a test spectrum for the assessment of aging performance of polyurethane coating on 7B04 Al-alloy plate. The aging behavior of polyurethane coating were characterized by means of macroscopic- and microscopic-observation, gloss loss-, color change- and adhesion strength-measurement, and electrochemical impedance spectroscopy (EIS) etc. Results show that the gloss loss and color change are not the suitable index for representing coating degradation degree, but the adhesive force and EIS are the appropriate ones to characterize the aging behavior of coating. The aging process of coating can be broadly divided into three stages: in the initial stage, the coating was intact with impedance above 1010 Ωcm2; in the middle stage, the anticorrosion performance of the coating was impaired to a certain extent with impedance within a range of 107~109 Ωcm2, while pores increase in the coating; and in the late stage, coating was failed with blisters on its surface, while, of which the impedance lowered to 106 Ωcm2 and the adhesive was reduced to 35% of the original value. It was found that the coating service life was ca 8 a, which is in line with the behavior conditions of the coating at the local airport. On this account, the rationality and feasibility coating accelerated aging test spectrum were verified.

Key wordsAl-alloy    polyurethane coating    accelerated testing spectrum    ultraviolet radiation    EIS    adhesion strength
收稿日期: 2016-04-26     
ZTFLH:  TG171  
基金资助:“泰山学者”建设工程专项经费
作者简介: 作者简介 崔晓飞,男,1975年生

引用本文:

崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 74-80.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.057      或      https://www.jcscp.org/CN/Y2018/V38/I1/74

图1  聚氨酯涂层加速实验流程
UV radiationW/m2 Temperature / ℃
5 10 15 20 25
<0.05 0.0161 0.0218 0.0293 0.0389 0.0511
0.10 0.0238 0.0322 0.4316 0.0573 0.0752
0.15 0.0298 0.0404 0.0542 0.0719 0.0944
0.20 0.0350 0.0475 0.0656 0.0844 0.1109
0.25 0.0397 0.0596 0.0721 0.0957 0.1257
0.30 0.0440 0.0622 0.0798 0.1060 0.1392
0.35 0.0479 0.0649 0.0871 0.1155 0.1518
表1  不同温度与紫外线辐照强度的折算系数
图2  不同老化周期涂层表面老化形貌
图3  涂层经不同周期老化实验后表面的微观形貌
图4  色差和失光率的变化
图5  涂层附着力的变化
图6  涂层试样经不同周期老化后的阻抗复平面图
图7  经不同周期老化实验后涂层试样的Bode图
[1] Su J X, Zou Y, Chen K M, et al.Corrosion mechanism and characteristic of 7075-T6 aluminum alloy panel on airline air-craft[J]. J. Mech. Eng., 2013, 49(8): 91(苏景新, 邹阳, 陈康敏等. 民航客机7075-T6铝合金壁板的腐蚀特征与机制[J]. 机械工程学报, 2013, 49(8): 91)
[2] Tan X M, Chen Y L, Duan C M.Analysis of growth characterization of 3-D cracks in corroded lap joints of aircraft struc-ture[J]. Acta Aeronaut. Astronaut. Sin., 2005, 26(1): 66(谭晓明, 陈跃良, 段成美. 飞机结构搭接件腐蚀三维裂纹扩展特性分析[J]. 航空学报, 2005, 26(1): 66)
[3] Tiong U H, Clark G.The structural environment as a factor affecting coating failure in aircraft joints[J]. Proc. Eng., 2010, 2: 1393
[4] Ganesan A, Yamada M, Fukumoto M.The effect of CFRP surface treatment on the splat morphology and coating adhesion strength[J]. J. Therm. Spray Technol., 2014, 23: 236
[5] Tan X M, Zhang D F, Bian G X, et al.Effect of corrosion damage on fatigue crack initiation mechanism and growth behavior of high strength aluminum alloy[J]. J. Mech. Eng., 2014, 50(22): 76(谭晓明, 张丹峰, 卞贵学等. 腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用[J]. 机械工程学报, 2014, 50(22): 76)
[6] Reynolds L B, Twite R, Khobaib M, et al.Preliminary evaluation of the anticorrosive properties of aircraft coatings by elec-trochemical methods[J]. Prog. Org. Coat., 1997, 32: 31
[7] Pang R, Zuo Y, Tang Y M, et al.Failure behaviors of epoxy/acrylic polyurethane organic coatings in corrosive media by EIS[J]. CIESC J., 2010, 61: 2656(庞然, 左禹, 唐聿明等. 环氧/聚氨酯涂层在4种环境中失效行为的EIS[J]. 化工学报, 2010, 61: 2656)
[8] Zheng T L, Zhang H, Wang X, et al.Research on the photoaging of acrylic polyurethane coatings using electrochemical impedance spectroscopy[J]. Acta Aeronaut. Astronaut. Sin., 2007, 28: 714(郑天亮, 张华, 王轩等. 用EIS法研究丙烯酸聚氨酯涂层的光老化性能[J]. 航空学报, 2007, 28: 714)
[9] Bierwagen G, Brown R, Battocchi D, et al.Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment[J]. Prog. Org. Coat., 2010, 68: 48
[10] Yang X F, Li J, Croll S G, et al.Degradation of low gloss polyurethane aircraft coatings under UV and prohesion alternating exposures[J]. Polym. Degrad. Stab., 2003, 80: 51
[11] Sun Z H, Zhang N, Cai J P, et al.Study on accelerated aging test of containing fluorine polyurethane topcoat applied in air-craft[J]. Mater. Eng., 2009, (10): 57(孙志华, 章妮, 蔡建平等. 航空用氟聚氨酯涂层加速老化试验研究[J]. 材料工程, 2009, (10): 57)
[12] Farrier L M, Szaruga S L.Sample preparation and characterization of artificially aged aircraft coatings for microstructural analysis[J]. Mater. Charact., 2005, 55: 179
[13] He C W, Ma S S, Liu H.Study on accelerated test spectrum for civil airplane protection system[J]. Equip. Environ. Eng., 2013, 10(1): 41(贺崇武, 马双双, 刘辉. 民用飞机防护体系加速试验谱研究[J]. 装备环境工程, 2013, 10(1): 41)
[14] Liu W T, Li Y H.Prediction Technology of Calendar Life of Aircraft Structures [M]. Beijing: Aeronautic Industry Press, 2004: 84(刘文珽, 李玉海. 飞机结构日历寿命体系评定技术 [M]. 北京: 航空工业出版社, 2004: 84)
[15] Sun Z H, Zhang N, Cai J P, et al.Electrochemical impedance varieties of zinc yellow polypropylene coated aluminum alloy used in aircraft during the accelerated degradation test[J]. Acta Aeronaut. Astronaut. Sin., 2008, 29: 746(孙志华, 章妮, 蔡健平等. 航空铝合金涂层体系加速老化试验前后电化学阻抗变化[J]. 航空学报, 2008, 29: 746)
[16] Allahar K N, Hinderliter B R, Bierwagen G P, et al.Cyclic wet drying of an epoxy coating using an ionic liquid[J]. Prog. Org. Coat., 2008, 62: 87
[17] Hinderliter B R, Croll S G, Tallman D E, et al.Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties[J]. Electrochim. Acta, 2006, 51: 4505
[18] Signor A W, VanLandingham M R, Chin J W. Effects of ultraviolet radiation exposure on vinyl ester resins: Characterization of chemical, physical and mechanical damage[J]. Polym. Degrad. Stab., 2003, 79: 359
[19] Scrinzi E, Rossi S, Deflorian F.Influence of natural and artificial weathering on aesthetic and protective properties of organic coatings[J]. Corros. Rev., 2011, 29: 275
[20] Guseva O, Brunner S, Richner P.Service life prediction for aircraft coatings[J]. Polym. Degrad. Stab., 2003, 82: 1
[1] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[10] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[11] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[12] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[13] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[14] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[15] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.