Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 366-374    DOI: 10.11902/1005.4537.2016.048
  研究报告 本期目录 | 过刊浏览 |
AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理
赵苇杭1, 王浩伟2, 蔡光义1, 董泽华1,3()
1 华中科技大学化学与化工学院 材料服役失效湖北省重点实验室 武汉 430074
2 中航工业特种飞行器研究所 荆门 448035
3 湖北文理学院化工与食品学院 襄阳 433500
Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers
Weihang ZHAO1, Haowei WANG2, Guangyi CAI1, Zehua DONG1,3()
1 Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 China Special Vehicle Research Institute, Jingmen 448035, China
3 School of Chemical and Food Science, Hubei University of Art and Science, Xiangyang 433500, China
全文: PDF(7984 KB)   HTML
摘要: 

采用极化曲线、电化学阻抗、电化学噪声以及形貌观测研究了AA6061铝合金在3.5% (质量分数) NaCl薄液膜下的点蚀诱发以及缓蚀剂抑制过程。结果表明:在NaCl薄液膜下,Ce3+作为阴极性缓蚀剂往往在铝合金表面的第二相组织 (如Mg2Si等微阴极相) 碱化区发生优先沉积,使铝合金局部腐蚀受到抑制;薄液膜越薄,Ce3+在微阴极区形成的沉积层越致密,进而显著抑制铝合金微阴极相表面的氧还原过程以及亚稳态点蚀的萌生和稳态点蚀发展。相反,在含相同浓度Ce3+的NaCl溶液中,由于Ce3+的氧化过程受到溶液中氧扩散速率的限制,导致Ce3+在溶液中对亚稳态点蚀的抑制能力相比薄液膜有所下降,即薄液膜下Ce3+的局部腐蚀抑制能力强于本体溶液中的。

关键词 铝合金薄液膜溶液点蚀缓蚀剂    
Abstract

The marine atmospheric corrosion of Al-alloys could be originated from the localized corrosion beneath thin electrolyte layers. The pitting initiation of Al-alloy AA6061 beneath thin electrolyte layer of 3.5%NaCl and bulk solution, as well as the corrosion inhibition of cerium ions were comparatively investigated by means of polarization curves, electrochemical impedance, electrochemical noise and micro-morphological observation. Results demonstrate that, as a cathodic corrosion inhibitor, the density and coverage of the deposited CeO2 film is mainly related to the thickness of thin electrolyte layer, the thinner the electrolyte layer is, the more compact the deposited CeO2 film becomes. As a result, the oxygen reduction on the secondary intermetallic phase (Mg2Si as cathode) of AA6061 alloy would be suppressed and therefore further refrain the initiation and development of pitting corrosion. The thinner the electrolyte layer, the higher the inhibition efficiency of cerium ions. Whereas, the inhibition efficiency of Ce3+ on the metastable pitting corrosion of AA6061 alloy in bulk NaCl solution decreases much more in the contrast to that beneath thin layer of NaCl solution.

Key wordsaluminum alloy    thin electrolyte layer    bulk solution    pitting corrosion    inhibitor
收稿日期: 2016-04-09     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金 (51371087)
作者简介:

作者简介 赵苇杭,女,1991年生,博士生

引用本文:

赵苇杭, 王浩伟, 蔡光义, 董泽华. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 366-374.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.048      或      https://www.jcscp.org/CN/Y2017/V37/I4/366

图1  薄液膜腐蚀电解池装置示意图和电极俯视图
图2  不同厚度3.5%NaCl液膜下AA6061铝合金的阴极极化曲线和极限扩散电流密度随液膜厚度的变化曲线
图3  含不同浓度Ce3+的3.5%NaCl薄液膜下AA6061铝合金的阴极极化曲线及极限扩散电流密度随液膜厚度的变化曲线
图4  AA6061铝合金在含1 mmol/L Ce3+的NaCl溶液中静止和搅拌条件下的阳极极化曲线
图5  在含1 mmol/L Ce3+的3.5%NaCl溶液及薄液膜下浸泡48 h后AA6061铝合金的阻抗谱
图6  AA6061铝合金在含Ce3+的NaCl薄液膜下及溶液中阻抗模值随时间的变化
图7  直流极化电位对AA6061铝合金在不同溶液状态下的阻抗谱影响及阻抗模值随极化电位的变化曲线
图8  AA6061铝合金在含1 mmol/L Ce3+ 的3.5%NaCl薄液膜下和溶液中的电位与电流噪声图
图9  AA6061铝合金在3.5%NaCl液膜下和溶液中亚稳态点蚀的形核速率与平均积分电量对比
图10  AA6061铝合金在不同溶液中腐蚀48 h后的微观形貌
图11  NaCl溶液中和薄液膜下铝合金点蚀与缓蚀抑制模型
[1] Liu X Y, Jiang J M, Chen Z T, et al.Research progress in anti-corrosive protection for aluminum alloy[J]. Mod. Paint. Finish., 2007, 10(12): 11(刘希燕, 蒋健明, 陈正涛等. 铝合金防腐保护研究进展[J]. 现代涂料与涂装, 2007, 10(12): 11)
[2] Godard H P.The Corrosion of Light Metals[M]. New York: John Wiley & Sons Inc, 1967
[3] Sherif E M, Ammar H R, Khalil K A.Effects of copper and titanium on the corrosion behavior of newly fabricated nanocrystalline aluminum in natural seawater[J]. Appl. Surf. Sci., 2014, 301: 142
[4] Huang Y S, Shih T S, Chou J H.Electrochemical behavior of anodized AA7075-T73 alloys as affected by the matrix structure[J]. Appl. Surf. Sci., 2013, 283: 249
[5] Su J X, Zou Y, Chen K M, et al.Corrosion mechanism and characteristic of 7075-T6 aluminum alloy panel on airline aircraft[J]. J. Mech. Eng., 2013, 49(8): 91(苏景新, 邹阳, 陈康敏等. 民航客机7075-T6铝合金壁板的腐蚀特征与机制[J]. 机械工程学报, 2013, 49(8): 91)
[6] Han D S, Li D.Influence of marine atmosphere humidity on initial corrosion of LY 12[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 134(韩德盛, 李荻. 海洋大气湿度对LY12铝合金初期腐蚀的影响[J]. 中国腐蚀与防护学报, 2007, 27: 134)
[7] Grilli R, Baker M A, Castle J E, et al.Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution[J]. Corros. Sci., 2010, 52: 2855
[8] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy[J]. Corros. Sci., 2006, 48: 2882
[9] Nguyen T H, Foley R T.The chemical nature of aluminum corrosion II. the initial dissolution step[J]. J. Electrochem. Soc., 1982, 129: 27
[10] Fang X Z, Cao X J, Yan W, et al.Research on correlation of lab accelerated corrosion tests and marine atmospheric tests of 7A52 aluminum alloy[J]. Environ. Sci. Technol., 2015, 33: 358(方晓祖, 曹学军, 闫薇等. 7A52铝合金海洋大气环境试验与室内加速试验的相关性研究[J]. 环境工程, 2015, 33: 358)
[11] Liu Y J, Wang Z Y, Ke W.Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al[J]. Corros. Sci., 2014, 80: 169
[12] Elola A S, Otero T F, Porro A.Evolution of the pitting of aluminum exposed to the atmosphere[J]. Corrosion, 1992, 48: 854
[13] Wan Y, Yan C W, Cao C N.Atmospheric corrosion of A3 steel deposited with different salts[J]. Acta Phys.-Chim. Sin., 2004, 20: 659(万晔, 严川伟, 曹楚南. 可溶盐沉积对碳钢大气腐蚀的影响[J]. 物理化学学报, 2004, 20: 659)
[14] Zhou H R, L X G, Dong C F. Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film[J]. Equip. Environ. Eng., 2006, 3(1): 1(周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展[J]. 装备环境工程, 2006, 3(1): 1)
[15] Shao M H, Fu Y, Hu R G, et al.Localized corrosion study of 2024-T3 alloy by scanning micro reference electrode technique[J]. Acta. Phys. -Chim. Sin., 2002, 18: 350(邵敏华, 付燕, 胡融刚等. Al2024—T3合金局部腐蚀的扫描微电极研究[J]. 物理化学学报, 2002, 18: 350)
[16] Cao C N.Principle of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008(曹楚南. 腐蚀电化学原理 [M]. (第三版). 北京: 化学工业出版社, 2008)
[17] Wang H L, Zheng J S.Progress of research on environmental-friendly corrosion inhibitors[J]. Corros. Sci. Prot. Technol., 2002, 14: 275(王慧龙, 郑家燊. 环境友好缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2002, 14: 275)
[18] Hao J L, Gao Y J, Dong Z H.Effect of siloxane sulfide and cerium salt complex conversion film on corrosion resistance of aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 525(郝敬丽, 高永晶, 董泽华. 硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J]. 中国腐蚀与防护学报, 2015, 35: 525)
[19] Zhong X K, Zhang G A, Qiu Y B, et al.The corrosion of tin under thin electrolyte layers containing chloride[J]. Corros. Sci., 2013, 66: 14
[20] Han W, Pan C, Wang Z Y, et al.A study on the initial corrosion behavior of carbon steel exposed to outdoor wet-dry cyclic condition[J]. Corros. Sci., 2014, 88: 89
[21] Wang F P, Yang C W, Zhang X Y, et al.Corrosion kinetics of zinc under thin electrolyte film by means of QCM[J]. Acta Phys.-Chim. Sin., 2001, 17: 319(王凤平, 严川伟, 张学元等. 石英晶体微天平研究Zn在薄液膜下的腐蚀动力学[J]. 物理化学学报, 2001, 17: 319)
[22] Aramaki K.Treatment of zinc surface with cerium (III) nitrate to prevent zinc corrosion in aerated 0. 5 M NaCl[J]. Corros. Sci., 2001, 43: 2201
[23] Arenas M A, Conde A, De Damborenea J J. Cerium: A suitable green corrosion inhibitor for tinplate[J]. Corros. Sci., 2002, 44: 511
[24] Cheng Y F, Luo J L, Wilmott M.Spectral analysis of electrochemical noise with different transient shapes[J]. Electrochim. Acta, 2000, 45: 1763
[25] Dong Z H, Shi W, Guo X P.Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution[J]. Corros. Sci., 2011, 53: 1322
[1] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[6] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[9] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[11] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[12] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[13] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[14] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[15] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.